
Venom2 Help File

by Venom Control Systems Ltd

Copyright © 2009-2021 Venom Control Systems Ltd

Venom2 Help FileI

Copyright © 2009-2021 Venom Control Systems Ltd

Table of Contents

Foreword 0

Venom2 Help 2

How to use this help file 4

Language Overview 6

... 6Description

... 9Language Structure

... 13New Features

Language Keywords 16

... 17+

... 17-

... 18*

... 18/

... 19^

... 19"

... 21=

... 22<>

... 22<

... 23>

... 23<=

... 23>=

... 24<< >> (Bit shift)

... 24<<<: >>> (Embedded text)

... 26$

... 26%

... 27'

... 28~

... 28: Colon

... 32,

... 32?

... 33!

... 36@

... 38:=

... 38()

... 39[]

IIContents

Copyright © 2009-2021 Venom Control Systems Ltd

... 40. [Dot]

... 41; [Comment]

... 41Abs

... 42Acos

... 42All

... 42And

... 43AndAlso

... 43Any

... 44Array

... 46As

... 47Asin

... 47Assignment

... 47Atan

... 47AutoDestruct

... 49Await

... 50Base

... 51Beep

... 51Break

... 51BS

... 52Call

... 54Case

... 54Catch

... 54Centre

... 54Char

... 55Chr

... 55Class

... 62Cls

... 62Cos

... 62CR

... 63Delete

... 63Derived

... 64Div

... 64Do

... 64Else

... 65End

... 65Eor

... 66Every

... 66Exit

... 67Exp

Venom2 Help FileIII

Copyright © 2009-2021 Venom Control Systems Ltd

... 68False

... 68Float

... 68Font

... 68Forever

... 68Global

... 69GotoXY

... 70Has

... 70Help

... 70Home

... 71If

... 72Index and Index0

... 73Int

... 73Inv

... 73Is

... 74IsFalse

... 75Left

... 75List

... 75Local

... 76Log

... 77Make

... 77Mod

... 78New

... 79Nil

... 80Nop

... 80Or

... 81OrElse

... 81ParamCount

... 82Parameter

... 83Print

... 85Program

... 86Private

... 87Protected

... 87Public

... 87Repeat

... 88Return

... 88Right

... 89Select

... 90Sin

... 90Sqrt

IVContents

Copyright © 2009-2021 Venom Control Systems Ltd

... 90Start

... 91Stop

... 93Swap

... 93Tan

... 94Task

... 95TextBlock

... 97Then

... 97This

... 98To

... 99True

... 99Try

... 101TypeOf

... 103Unsigned

... 103Wait

... 104Word

... 104While

... 105PrintF

Object Types 107

... 108Locking

... 110PrintF

... 114Common object properties

... 115AlphaLCD

... 119Analogue

... 128Array

... 134Buffer

... 151CANBus

... 162Class-default

... 166CRCGenerator

... 168DateTime

... 177Digital

... 185Encrypter

... 191Ethernet

... 204FileSystem

... 236File

... 248FTPClient

... 254FTPServer

... 261GraphicsLCD

... 291HashGenerator

... 293HTTPServer

Venom2 Help FileV

Copyright © 2009-2021 Venom Control Systems Ltd

... 320I2CBus

... 326IProt

... 330Keypad

... 337NIL

... 338NumberReader

... 345OnBoardLED

... 348OneWire

... 355OperatingSystem

... 379PIDController

... 384POP3Mailbox

... 387PrintJob

... 389PulseCounter

... 391PulseWidthIn

... 396PulseWidthOut

... 402RandomNumberGen

... 404RealTimeClock

... 412SafeData

... 421Semaphore

... 424SerialPort

... 434Shaft

... 437SMSLink

... 450SMTPSender

... 452SPI

... 456String object

... 465Stopwatch

... 467Task

... 469TextAnalyser

... 477UDProt

... 484PPProt

... 493TCProt

... 504Timer

... 507TouchScreen

... 522TouchScreen: Button

... 527WiFiLink

... 541XMODEMLink

Pre-processor commands 547

... 547#Define, etc

... 549#If, etc

VIContents

Copyright © 2009-2021 Venom Control Systems Ltd

TCP/IP Networking 553

... 554Notes on TCP/IP

... 554IP Addresses

... 555Example Code

... 559Glossary

Appendix 562

... 562A: Startup Sequence

... 563B: Robust applications

... 564C: Calling foreign code

... 564D: Development Checklist

... 565E: Error messages

... 567F: FAQ

... 568G: Glossary

... 572H: Number Limits

... 572I: Operator Precedence

... 573J: Speed of Execution

... 574K: Optimisation

... 576L: ASCII Character Set

... 578M: Memory Map (VM2)

... 579N: Protecting your application

... 579O: Updating Venom2

... 579S: Serial settings

Credits 582

Index 583

Venom2 Help

2

Copyright © 2009-2021 Venom Control Systems Ltd

Venom2 Help
This is the Help File for the Venom2 language.

How to use this file

Version

V 2021 07 01

Copyright © 2009-2021 Venom Control Systems Ltd

All rights reserved

How to use this help file

4

Copyright © 2009-2021 Venom Control Systems Ltd

How to use this help file
About this help file

This help file contains a description of the Venom2 Language (for the VM2) and detailed
information on every keyword and object in it. There is also an overview of the language, and
various tables, charts, diagrams and appendices.

Finding what you want

There are several ways to find the information you want in this file:

From this file, use the Contents, Index or Search tabs at the top of the panel to the left.

From VenomIDE (our integrated development environment): put the cursor in a Venom
keyword, right click it for a pop-up menu, and choose Help on: ____, or just hit F1.

The most up to date information

NOTE Although this help file reflects the most current information possible, you should read the
Venom2 Release Note for information that may not have been available prior to the publication
of this version of the Help file. In particular, as Venom2 is being continually improved, the
Release Note will document the added features and improved functioning available in any
particular version of Venom2 over that described in this help file.

The Release Notes can be found online at Venom Control Systems

WARNING: Users of control equipment should be aware of the possibility of a system failure,
and must consider the implications of such failure. Venom Control Systems Ltd. can accept no
responsibility for loss, injury, or damage resulting from the failure of equipment we supply. Use
of our products in applications where their failure to perform as specified could result in injury or
death is expressly forbidden.

https://www.venomcontrolsystems.co.uk

Language Overview

6

Copyright © 2009-2021 Venom Control Systems Ltd

Language Overview
Here is an overview of the Venom2 Language

Description and heritage of Venom2

The structure of Venom2

New features in Venom2

Description

Venom2 is a language for writing control applications. Typical uses are

Industrial automation

Process control

Intelligent instruments

Security systems

Hand-held devices

Heritage

Venom2 is based on the original Venom and Venom-SC languages (used in the Scorpion K4
and VM1 control computers).

Venom was an object oriented version of 'the Scorpion language' that ran on the Micro-
Robotics Scorpion Control Computer, which was itself loosely based on LOGO, a language
used to teach computing to schoolchildren.

Venom2 is similar to Venom-SC, but has notable improvements, such as user defined Classes.

Both Venom-SC and Venom2 are ‘Semi-Compiled’. This means that the code is partly
compiled, but not all the way down to native machine code. The earlier languages developed at
Micro-Robotics were interpreted; semi-compilation yields a considerable speed increase while
maintaining the small code size and flexibility of an interpreter.

Block Structured
Statements in Venom may be grouped together into a block equivalent to a single statement
using [and]. Language constructs are based around the ‘recursive’ nature of statements.

No statement separators
Venom has no statement separators equivalent to C’s semicolon ‘;’. Instead the Venom parser
relies on the syntactic structure of each keyword and operator to recognise where a statement
ends. Venom statements will span any ‘white space’, including carriage returns. This allows
indentation to reflect the block structure of code.

Dynamically Typed
Variables in Venom are stored as a value and a type. The type of a variable is only set when the

7 Language Overview

Copyright © 2009-2021 Venom Control Systems Ltd

variable has been assigned a value. Potentially any variable may hold a value of any type. This
means the compiler cannot do any type checking on variables. All type checking is done at
runtime rather than compile-time. This makes for a flexible and forgiving language for fast
application development, but isn’t so formally precise as strongly typed languages. Runtime type
checking also has a small speed penalty.

All variables take eight bytes of storage. Four bytes are used to hold the value element of the
variable, and one is used to hold the type. Another byte is used to indicate the write-protection
status of the variable. The remaining two bytes are reserved for future use.

When a global variable is first created, it is given the special type ‘Unassigned’. This allows the
runtime system to error if there is an attempt to use a variable before it has been given a value.
Local variables are initialised to the value integer zero, unless explicitly initialised at declaration.

Name Scope
Venom has four main user-defined-name scopes: Global variables, local variables, Class
members and macros. Global variable names are used for procedures and also integer, floating
point and other types of variable. Global names are ‘visible’ from any procedure and any task in
the multitasking system - unless local variable or class member names eclipse them.

Local variables are only visible from within the procedure where they are defined. If a local
variable has the same name as a global, then the local takes precedence. Local variables are
created when the procedure is called, and destroyed when the procedure is done. They are held
on the stack.

Parameters passed to procedures are essentially local variables that have been initialised to the
parameter values, and are equivalent to locals in their operation.

Class members are visible from inside and outside a class.

Macros
Macros are bits of program text that have been given a name so that they may be instantiated
many times, or simply to improve readability.

Object Orientation
There are many pre-defined object types in Venom, and a set of pre-defined messages names,
that are accepted by these objects. Because of the weakly typed nature of the language, any
variable may potentially accept any message with any parameters, returning any, or no, result
(which gives a kind of polymorphism). As with other type checking, this is all sorted out at
runtime.

It is also possible to create new classes of object in Venom, using the keyword Class. A
class may inherit from another class (single inheritance), though not directly from any of the
pre-defined Venom classes.

A Venom value that ‘holds’ an object is actually more equivalent to a pointer to that object. If
you copy the value then you haven’t got two objects, you have two ‘handles’ on the same
object. A handle is a value that uniquely identifies a particular object to the code that deals with
that type of object. It may, or may not, be a memory pointer.

8Description

Copyright © 2009-2021 Venom Control Systems Ltd

Garbage Collection
Garbage collection is the term given to the freeing-up of memory, and other resources, that are
no longer required by a program. In some high level languages garbage collection is done
automatically, but it is not at all easy to combine automatic garbage collection with 'hard realtime'
applications, which is what Venom2 is aimed at.

For this reason there is no automatic garbage collection system in Venom, so you will need to
keep track of the objects you create yourself. This is most easily handled by creating all the
objects your program will ever need at the start of your program. This is the best way in most
Venom applications, but there are some applications where you can't predict how many objects
of a given type you'll need at the start. In these cases you'll need to create and remove objects
dynamically.

Objects created dynamically (i.e. created and destroyed during program operation, rather than
just created at the start) are often held in local variables or in the members of a 'parent' object.
In this case the AutoDestruct mechanism may be used to remove these objects when the
procedure ends or the parent object is removed.

There is a built-in 'memory-leak detector' (or Garbage Scanner) that may be used to qualify
Venom programs.

Data Structures
All data structures are handled by objects. The data structures available are:

Array – a fixed-size array of initialised data. Arrays can take many types of data.

Buffer – a variable-sized list of variable data that can hold integers, floats, text. A special type of
buffer (called 'Buffer of Any') may also contain mixed data of any type, including other objects.
Buffers can perform sophisticated operations on the data they contain.

String – an array of text with a defined maximum size.

TextBlock - used to embed large amounts of text in a source file.

Class - user-defined classes may be used to implement complex, hierarchical data structures.

String Handling
To handle textual data, Venom has string constants, String objects , Arrays of strings, and text
Buffers. It also has the Print command, which in Venom is used to do much more than print to an
output device - it is used for sophisticated text manipulation. Venom also has a PrintF message,
with similar syntax to C's printf() function.

Multitasking
The Venom2 language and its forebears have multitasking built in. To the application writer, the
task manager is a pre-emptive round-robin system. That is, all tasks have equal priority and run
one after the other, being swapped out by the task manager with little external control.
Underneath, tasks run co-operatively – choosing when to swap out. This makes the Venom
runtime system easy to manage and more efficient. Each part of the venom runtime system is
required to obey rules that set the maximum period a task may run for. This then defines the

9 Language Overview

Copyright © 2009-2021 Venom Control Systems Ltd

system latency as a the maximum time-slice period (1-2mS in Venom2) multiplied by the number
of tasks.

Task scheduling is indicated to the task manager by using language constructs that wait.
Examples are Wait, Every and any message to an object that needs to wait: e.g. keypad .
Get.

Printing
Printing is used to create a textual representation of a numeric value or an object, and send this
text to an output device.

However, in Venom, printing is also used as the basis for most text or string manipulation.

There are two different ways to print within Venom2: the classic Venom Print statement, and
sending the PrintF message to a text handling object.

Print

Printing an object, or printing to an object are used to handle a many otherwise lengthy or
tedious operations. For example you can show the date and time in an instantly recognisable
format by printing the RealTimeClock object. Conversely you may also set the time in the clock
by printing a date and time to it.

There are a set of special printing keywords that represent operations like carriage return (CR),
clear screen (CLS) and so on. Additional formatting of print output is handled by passing
special parameters to the print command using the colon print format operator.

PrintF message

The PrintF message is very much like C's printf(), fprintf(), etc functions. You provide a format
string and a list of parameters, and the resultant formatted text is sent to the object.

Internally, Print and PrintF output is packaged up into ‘print jobs’. These are discrete amounts
of text with some extra coding to take care of the special print keywords that Venom uses.
Using print jobs reduces the overhead of sending print output to an output device character by
character.

Language Structure

The following is a list of all the elements of the language, building from the bottom up. Only the
major structural layers are discussed here; the details of the structure of each keyword and
symbol are discussed in the main body of the book.

Character set
Venom2 uses the following characters, which have been arbitrarily divided into the following
classes for discussion:

Alphabetic: A-Z a-z _
Numeric: 0-9
Operator Symbols: + - * / \ < = > @ ? ! ^
Number base: $ % ~

10Language Structure

Copyright © 2009-2021 Venom Control Systems Ltd

Quote: " '
Separator: , . : ;
Bracket: () []
White space:<SPACE> <TAB> <CARRIAGE-Return>
Control: <CTRL-C>, <CTRL-T>

Any other character will cause a syntax error, unless it is part of a character constant or string
constant.

Constants
Constants may be integer (sub-divided into decimal, hex and binary), floating point, character or
string:

12 $AF %1101101
12.34 1.2E-5
‘A’
“A string”

Integer constants start with a numeric character, or a $ for hexadecimal numbers, or a % for
binary numbers. Decimal constants may only use numeric characters. Hexadecimal constants
consist of the characters 0-9 and A-F or a-f. Binary constants may only use 1’s and 0’s.

Floating-point constants start with a numeric character and have a decimal point somewhere
within them. They may also optionally have an exponential part, indicated by an ‘E’ or ‘e’
followed a positive or negative integer exponent.

Character constants are a single character surrounded by single quotes: ‘A’.

String constants are a group of characters surrounded by double quotes: “abcde”.

The Venom2 compiler is capable of a high degree of constant folding, so many expressions
involving constants are also themselves treated as constants by the compiler: 10 + 100 is treated
as 110.

Variable names
Variable names may be up to 64 characters long. They consist of alphabetic, numeric and
underscore ‘_’ characters. Names may not begin with a number. Variable names may not be
the same as any Venom keyword, class name, or message name.

Variables
Variables in Venom are always eight bytes. Any variable may hold any of the various data
types, including handles to any type of object. The value portion of the variable is four bytes
wide (32 bits).

There are two main 'scopes' of variable: global and local. Global variables are created simply
by using their name either on the command line or in a procedure. Any variable that is not
explicitly defined as a LOCAL variable is global.

Loop indexes
There are two ‘variables’ defined by the language: Index and Index0. These are loop indexes:
they hold the loop count for the looping construct currently running. Index starts counting at 1,

11 Language Overview

Copyright © 2009-2021 Venom Control Systems Ltd

Index0 starts at 0. You cannot assign values to them. A distinct value for Index0 is held for
each level of loop nesting.

Expressions
Expressions consist of one or two sub expressions linked by an operator. The simplest sub-
expressions are constants, variables and procedure calls. Expressions of arbitrary complexity
may be built up from this ‘recursive’ structure. The order of evaluation of operations is defined
by the operator precedence. Parentheses () may be used to override the precedence rules.

There are three main kinds of operator binding in Venom: binary, prefix, and postfix.

Binary operators take two operands, one before the operator and one after it. Prefix operators
appear before the operand, and postfix operators appear after it.

Pointer Expressions
This shouldn’t really be a separate level of language structure …

Venom supports many kinds of pointer expressions. In particular you may take a pointer to any
variable (including procedures, objects, local variables) using the @ (‘at’) symbol. You may
then ‘de-reference’ a pointer using the ! (pronounced ‘pling‘) symbol. Thus you may do many
of the sophisticated functions available in other modern languages like calling procedures using
procedure pointers.

Statements
A venom statement is relatively complicated to define. Venom statements are the most
complicated of the structural layers of the language, closely followed by expressions.

A statement is either

One of the system operations: Make, PRINT, DELETE, HELP, … , etc.

One of the Venom flow control constructions: If While Repeat Every … etc.

An assignment using the := (becomes equal to) operator

An expression (normally this is a procedure call or a message to an object)

Square brackets, [], surrounding a set of sub-statements.

Detailing each of these…

Venom system operations and flow control constructions are all different, but many of them have
one or more expressions or sub-statements as part of their structure. These are all documented
later in this book. For example the While statement needs an expression and a sub-statement to
complete it:

While <expression> <statement>

Venom assignment syntax is

<Left-hand side expression> := <expression>
A left-hand side expression must evaluate to either a variable, the address of a variable, a
memory location, or a message to an object.

12Language Structure

Copyright © 2009-2021 Venom Control Systems Ltd

Expressions are covered elsewhere.

Square brackets [] are for grouping statements together so they are equivalent to a single
statement:

[<statement><statement><statement> …]

As with expressions, statements of arbitrary complexity may be built up with this recursive
structure.

Comments
The Venom comment separator is semicolon ‘;’. The compiler ignores any further text until the
next carriage return. There is currently no in-line comment structure like C’s /* */. Comments
may be placed anywhere within the code.

Procedures
Simply speaking, a procedure is a named list of statements. A procedure is delimited by the
keywords To and End. A procedure may also have a list of parameter names, and a set of local
variables. Internally, local variables and parameters are the same thing. The syntax for a
procedure is

To <proc name> (<parameter name> , …)
LOCAL <local variable name> := <expression> , …
<statement>
<statement>

<statement>
End

Parameters may be declared as optional using square brackets. Optional parameters are
intialised to integer zero if they are not supplied, and the value ParamCount gives the number of
actual parameters supplied.

LOCAL variable declarations may be separated by the keyword LOCAL or by commas. You
may initialise local variables with any expression. The LOCAL declarations must all come
before any other statements.

All procedures return a result: if you don’t explicitly set the return value using the Return
keyword, then a default value is returned. Currently this is integer zero.

To call a procedure, use its name alone, or with parentheses (), after it. If the procedure takes
parameters then you need to put expressions for these in parentheses after the name. For
example:

my_proc
my_proc()
my_proc_with_params(1,2)

13 Language Overview

Copyright © 2009-2021 Venom Control Systems Ltd

Classes
A Class is a type of object. An object is a collection of data items, where each item of data has
a name and a type, called members, together with a collection of procedures to operate on that
data, called methods. A class by itself can't do much. To do something with it you have to
create a new instance of the class - an object.

There are two basic kinds of class in Venom2: pre-defined classes, built into the Venom2
language, and user-defined classes.

Much of the power of the Venom language resides in the pre-defined classes, with yet more
power available in the user-defined classes.

Tasks
A task is a section of the overall application program that may run concurrently with other
sections. In the simplest case there may only be one task running. However it is possible to
create other tasks. These tasks will all run at the same time and are independent: in general,
several tasks may carry out different operations at the same time.

The venom syntax for creating a new task is:

<task object> := Start <statement>
The sub-statement to Start will be run as an independent task.

Although the statement may be any Venom code it is good practice to keep it short: often it’s
just a single procedure call.

A task will run continuously until it runs out of code to execute, or if it is stopped using Stop or
Stop ALL. If the task code is an infinite loop then the task will never end.

Venom Stack
There is a procedure-call stack (called the Venom Stack) that stores the return address of the
code that the procedure was called from and the frame pointer - that is a pointer to the current
stack frame. A stack frame is an area of the stack that holds the values of all the parameters
and local variables that are associated with a procedure. A new stack frame is added to the
stack when a procedure is called and removed when the procedure is done.

The return address and frame pointer take 8 bytes of stack memory each, as do each of the
parameters and local variables. The size of the Venom Stack is large enough for just about any
sensible program that doesn't use recursion.

New Features

Here are a few features that are new to Venom2 - i.e. they were not present in Venom-SC.

Language structure

User-defined classes

Optional parameters

14New Features

Copyright © 2009-2021 Venom Control Systems Ltd

Try/Catch exception handling

Operators

AndAlso, OrElse, IsFalse

Bit-Shift

Inv

Objects and messages

Semaphore object

PrintF message

Pre-processor

Macro parameters

#Redefine, # Undefine

#If conditional compilation

Language Keywords

16

Copyright © 2009-2021 Venom Control Systems Ltd

Language Keywords
This is the complete list of keywords in the Venom2 language in alphabetic order. Symbols are
grouped according to function rather than ASCII order.

You will find all the keywords listed in the Contents panel to the left.

How to use the Keywords section

The keywords are in alphabetic order, with the non-alphabetic symbols at the front, roughly
grouped together by function rather than in ASCII order. Each keyword has a syntax
description followed by information on what the keyword does, with code examples

Print net ; This is a code example

There may be supplementary information of various kinds, indicated by the following icons:

This gives information on any limits to the parameters or results of the keyword

This gives information on the hardware needed to use this keyword.

This gives information on the memory usage of the keyword

This gives information on timing aspects of the keyword

This gives pointers to other parts of the manual for related topics

This warns you to beware of putting bugs in your code

Syntax descriptions

Under each keyword there is a semi-formal description of the way it is used in a program; both
the syntax and the types of parameters and results are given.

The syntax descriptions are not intended to be fully precise, but instead to give a simple guide as
to how the keywords and symbols should be used. The complexity of a fully precise description
of each keyword might obscure rather than illuminate its operation.

Here is a guide to interpreting the syntax descriptions:

Text in square brackets [] indicates an optional part of the construction.
Where there might be confusion between the brackets in a syntax description and the
brackets that are part of the language, the syntax description brackets will be in regular
text.

Text in <angle brackets> indicates a reference to a ‘lower level’ construct:

<name> means any Venom name, and may be qualified by Global or Local

<statement> means any Venom statement

<expression> means any Venom expression, and may be qualified by a data type.

The following in regular text indicate the data type of a value: Int, Float, String, Object,
Pointer, Any. Any means that the data type might be any of the other types.

17 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

The symbol means the construction returns a result. The type is given in 'light' (not
bold) text: e.g. Int

Ellipses … indicate optional repetition of the preceding construct.

As an example

Make d digital(Int channel, [Int attributes])

+

< Int expression> + < Int expression> Int

< Int expression> + < Float expression> Float

< Float expression> + < Int expression> Float

< Float expression> + < Float expression> Float

The + operator adds two numbers. If either operand is a floating-point number, the result will be
floating-point.

See operator precedence for which operators are evaluated first.

The limits to the operands and result of + are those that apply to all internal calculations. See
Number Limits

-

< Int expression> - < Int expression> Int

< Int expression> - < Float expression> Float

< Float expression> - < Int expression> Float

< Float expression> - < Float expression> Float

- < Int expression> Int

- < Float expression> Float

When used as a binary operator (between two values), the - operator subtracts the right-hand
operand from the left-hand. If either operand is a floating-point number, the result will be
floating-point.

When used as a prefix (before a value), the value is made negative and retains its type.

18-

Copyright © 2009-2021 Venom Control Systems Ltd

See operator precedence for which operators are evaluated first.

The limits to the operands and result of - are those that apply to all internal calculations.
See Number Limits

If you use don't use comma's to separate parameters, then be careful of the unary minus
operator – it can be confused with binary minus:

three_param_proc(1 –2 3) ; we’ve only sent two parameters here!

*

< Int expression> * < Int expression> Int

< Int expression> * < Float expression> Float

< Float expression> * < Int expression> Float

< Float expression> * < Float expression> Float

The * operator multiplies two numbers. If either operand is a floating-point number, the result
will be floating-point.

See operator precedence for which operators are evaluated first.

The limits to the operands and result of * are those that apply to all internal calculations. See
 Number Limits

/

< Int expression> / < Int expression> Float

< Int expression> / < Float expression> Float

< Float expression> / < Int expression> Float

< Float expression> / < Float expression> Float

The / operator divides the left-hand operand by the right-hand. The result is always floating-
point, even if both operands are integers. Use Div if you want to do integer division.

See operator precedence for which operators are evaluated first.

The limits to the operands and result of / are those that apply to all internal calculations. See
Number Limits

19 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

^

<Int> ^ <Positive Int> Int

Otherwise...

<Int or Float> ^ <Int or Float> Float

The ^ operator raises the first operand to the power of the second. If both operands are Int and
the second is positive then the result will be an integer.

Note: ^ has the same precedence as *, etc. See operator precedence for which operators are
evaluated first.

The limits to the operands and result of ^ are those that apply to all internal calculations. See
 Number Limits

"

"<characters>" String constant

<characters> is a string made up from any printable character apart from “ and \. These
and other special characters may be introduced with an escape sequence.

The double quote symbol is used to enter text strings into the program. It must always be
balanced with another quote at the end of the string. All quoted strings are string constants, that
is you may not change the characters within the string after it has been defined.

You may use string constants in fairly sophisticated ways. For example you may enable your
application for different spoken languages. By running one of the procedures below at any time
you can change your user interface language:

To english
 Yes_string := "Yes"
 No_string := "No"
End

To french
 Yes_string := "Oui"
 No_string := "Non"
End

If answer_correct

20"

Copyright © 2009-2021 Venom Control Systems Ltd

 Print yes_string

If you need more sophisticated text handling (manipulation of characters within a string etc), use
a String object or Buffer object.

Similar to string objects

Note that string constants and String objects (variable strings) are very similar: string constants
will accept many of the messages that string objects will. For example string constants can be
asked for their length with .Length:

-->Print Yes_string.Length
 3

Concatenating quoted strings

Strings may be extend over more than one line: if two quoted strings are only separated by
whitespace or comments then they will be run together.

These lines of code result in the string below them being defined:

"This string " ; This is a comment
"Runs into this one"

Resultant string:

"This string Runs into this one"

 To embed large strings of completely literal text within a Venom source file use Embedded
Text or TextBlock.

Escape sequences

In Venom2 an escape sequence is introduced with the \ character ('backslash'). The complete
list of escape codes is

Sequence Yields the character ASCII

\\ Backslash: \ 92 $5C

\" Double quotation mark: " 34 $22

\$hh Any ASCII character from hexadecimal digits - hh

\a Causes a terminal to emit an audible alert 7 $07

\b Backspace 8 $08

\f Form feed 12 $0C

21 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

\n New line 10 $0A

\r Carriage Return (use new line, \n for most purposes) 13 $0D

\t Horizontal tab 9 $09

\v Vertical tab 11 $0B

The sequence of \ followed by any other character is ignored completely (no characters are
entered into the string constant) – though additional sequences may be added in future.

Graphics LCD

The following Escape sequences are used only when printing to a GraphicsLCD, particularly
when using PrintF.

\^hh Bitmap insertion; hh is the bitmap number as a hex pair

\L Set Left justification

\C Set Centre justification

\R Set Right justification

\Fhh Set Font - hh is the font number specified as hex pair

 Print formatting for strings.

=

<Any expression> = <Any expression> Int

The ‘Equals’ operator takes two numbers and performs a comparison.

It evaluates to True (1) if its two operands are the same type and value, False (0) otherwise.

N.B. Unlike other operators, = does no type coercion, so a Float is never equal to an Int

For example,

-->Print 1 = 1.0
0

This limitation is used so as to preempt problems caused by Floats being imprecise in some
circumstances. If you need to compare an Int and a Float, use the type conversion operators
As Int or As Float:

22=

Copyright © 2009-2021 Venom Control Systems Ltd

-->Print 1 As Float = 1.0
 1

Comparing floats

While it is possible, it is not usually a good idea, to compare two Float values using =. Two
Float values may appear the same in some circumstances, but may be different in others. For
example

-->Print 1/7 , CR
 0.142857
-->Print (1/7 = 0.142857) , CR
 0

i.e. the two values for 1/7 were not seen to be the same.

Instead use operators like > and <, etc. to compare Floats.

Comparing strings

When = is used to compare strings, the comparison is made between the objects'
'handles' (pointers), not the text. Thus = can not usefully be used to compare two strings -
instead use String.Compare.

See operator precedence for which operators are evaluated first.

The two operands can be of any type.

<>

<Any expression> <> <Any expression> Int

The ‘Not equal’ operator takes two numbers and performs a comparison.

It evaluates to True (1) if its two operands are of different types or values, False (0) otherwise.

In general, it is unwise to use = and <> with floating point numbers. See = for more
information about this.

See operator precedence for which operators are evaluated first.

The two operands can be of any type.

Equals operator

<

<Any expression> < <Any expression> Int

The ‘Less than’ operator evaluates to True (1) if the first operand is less than the second, False

23 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

(0) otherwise.

 < can be used with mixed integer and floating-point operands.

See operator precedence for which operators are evaluated first.

The limits to the operands of < are those that apply to all internal calculations. See Number
Limits

>

<Any expression> > <Any expression> Int

The ‘Greater than’ operator evaluates to True (1) if the first operand is greater than the second,
False (0) otherwise.

> can be used with mixed integer and floating-point operands.

See operator precedence for which operators are evaluated first.

The limits to the operands of > are those that apply to all internal calculations. See Number
Limits

<=

<Any expression> <= <Any expression> Int

The ‘Less than or equal’ operator evaluates to True (1) if the first operand is less than or equal
to than the second, False (0) otherwise.

 <= can be used with mixed integer and floating-point operands.

See operator precedence for which operators are evaluated first.

The limits to the operands of <= are those that apply to all internal calculations. See Number
Limits

>=

<Any expression> >= <Any expression> Int

The ‘Greater than or equal’ operator evaluates to True (1) if the first operand is greater than or
equal to than the second, False (0) otherwise.

 >= can be used with mixed integer and floating-point operands.

See operator precedence for which operators are evaluated first.

The limits to the operands of >= are those that apply to all internal calculations. See Number

24>=

Copyright © 2009-2021 Venom Control Systems Ltd

Limits

<< >> (Bit shift)

<Int> << <Int> Int

<Int> >> <Int> Int

The << and >> operators shift binary bits left or right in the first operand, by a number of bits
given by the second operand. Both operands must be integers.

The shift is always logical - i.e. a right shift operation will shift in 0 bits on the left. See below for
an Arithmetic Right Shift.

If the right hand operand is negative the results are not defined.

<< and >> have the same precedence as *, etc. See operator precedence for which operators
are evaluated first.

The limits to the operands and result of << and >> are those that apply to all internal
calculations. See Number Limits

Arithmetic right shift

There isn't an arithmetic right shift operator in Venom, but you can achieve the same effect using
the Div operator.

So the arithmetic equivalent of

a >> b
would be

a Div (1 << b)
Because the Venom compiler folds constants, these two will compile down to the same number
of bytecodes, and will execute with very similar speed.

<<<: >>> (Embedded text)

<<<:Embedded text>>> String constant

The embedded text syntax allow you to embed literal blocks of text in your code. This is very
useful when writing web server applications which often require you to embed bits of HTML
code in your venom procedures and methods.

The embedded text is literal: every character in the file is included exactly as it appears in the
editor, apart from line endings, which are always converted to '\n' by the Venom compiler.

25 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

The embedded text doesn't have to occupy whole lines in the Venom code - it can start and end
anywhere on a line.

There is a provision to include a description of the type of text that is being embedded - any
printable characters between the opening <<< and the : are not part of the embedded text but
may be used to signal to a syntax highlighter what kind of text follows, as it may have the ability
to apply appropriate highlighting.

Examples

Print <<<:<H1>This is a heading</H1>>>>
PrintF(<<<:<H1>This is a %s</H1>>>>, "heading")
Both of these lines result in the following characters being printed:
<H1>This is a heading</H1>

Note that even though the closing </H1> tag ends with >, this is not seen as part of the closing
symbol: >>>.

Here we have some embedded text that comprises several lines:

Print <<<:
<H1>This is a heading</H1>
And this is some text.
>>>

Exceptions

In order to allow multi-line embedded text to look neater, if the colon is the last character on a
line then the 'new line' character is not included in the text. The following example starts with the
< character:

Print <<<:
<H1>This is a heading</H1>
And this is some text.
>>>

If you want your text to start with a blank line then you will need to do this:

Print <<<:

<H1>This is a heading</H1>
And this is some text.
>>>

Limitations

Embedded text is stored inside the procedure or method it appears in. The size of a Venom
procedure or method can't exceed 32KB, so this means that the total of all the embedded text in
a single procedure, and all the other Venom code, should not exceed 32KB.

26<<<: >>> (Embedded text)

Copyright © 2009-2021 Venom Control Systems Ltd

VenomIDE Style tidier

The style tidier doesn't recognise the <<<:>>> construct and will try to tidy up the text inside
the block.

Future enhancements

We may add a provision to change the closing sequence from the default >>> to other user-
defined strings.

 TextBlock, String concatenation.

$

$<hex characters> Int

<hex characters> is a number made up from the characters 0-9, a-f, A-F

The dollar symbol is used to indicate hexadecimal (base-16) numbers. Hex numbers are often
useful when accessing memory or hardware registers directly.

In base 16, the letters A-F represent the numbers 10-15. You can use upper or lower case.
For example:

-->Print $A1f1
41457

Numbers can be printed in hexadecimal using ~.

The maximum hexadecimal number that can be used is $FFFFFFFF.

See also %, ~

%

%<zeros or ones> Int

<zeros or ones> is a number made up from the characters 0 or 1 only

The percent symbol is used to indicate binary (base-2) numbers. Binary numbers are often useful
for accessing memory or hardware registers directly, and also for entering bitmaps. For
example:

-->Print %101010
42

27 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

The maximum positive number that can be entered in binary is %
1111111111111111111111111111111 (31 1’s).

The minimum, most negative, number that can be entered in binary is

%10000000000000000000000000000000 (a 1 and 31 0's)

See also $, ~~

'

'<character>' Int

<character> is any printable character, or one of the escape code sequences.

The single quote is used to enter ASCII character constants into a program. It is just another
way of expressing an integer.

For example

-->Print 'A' ;ASCII code for A
 65

-->Print '\'' ;escape sequence for ACSII single quote
 39

The full list of escape codes for other characters is

Sequence Yields the ASCII code for ASCII Value

\\ Backslash: \ 92 $5C

\' Single quotation mark: ' 39 $27

\a Causes a terminal to emit an audible alert 7 $07

\b Backspace 8 $08

\f Form feed 12 $0C

\n New line 10 $0A

\r Carriage Return 13 $0D

\t Horizontal tab 9 $09

\v Vertical tab 11 $0B

28~

Copyright © 2009-2021 Venom Control Systems Ltd

~

Print ... ~ <Int expression> ...
Print ... ~~ <Int expression> ...

The tilde modifier (pronounced tillda) is used to print integers in hexadecimal or binary.

Hexadecimal

In hexadecimal the letters A-F will always be printed in upper case. For example:

-->Print ~41457
 A1F1

Note that hexadecimal numbers are not printed with a $ prefix. Hex numbers are always printed
as ‘unsigned’ E.g.

-->Print ~-1
FFFFFFFF

The formatting of hexadecimal numbers is the same as decimal integers.

See also $, %, :

Binary

Printing in binary is indicated using two tildes - ~~.

For example:

-->Print ~~42
101010

Note that binary numbers are not printed with a % prefix. Binary numbers are always printed as
‘unsigned’ E.g.

-->Print ~~-1
11111111111111111111111111111111

The formatting of binary numbers is the same as decimal integers. See : for more details.

See also $, %, :

: Colon

Print <Any expression> : <Any expression> : … , …

The colon symbol is a print format modifier or Class inheritance operator.

We deal with print formatting here. See here for inheritance.

Zero or more colons are used after each item in a Print list to specify the formatting of the item
being printed. Each colon is followed by a parameter. The way these formatting parameters are
interpreted depends on the type of thing being printed:

29 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Integers

IP dotted-quad style

Floats

Strings

Objects

Other formatting options

There is a completely different way of printing available which involves sending the PrintF
message to an output object (or the OperatingSystem object).

 PrintF

Formatting Integers

Only one colon formatting parameter is used for integers, and this sets the minimum number of
characters, or field width, used to print the number. This is used to make neat columns of right-
justified numbers, for example:

-->Print 1:4, 123:4, CR, 99:4, 456:4
 1 123
 99 456

If the number takes more digits than the given field width, it will take as many characters as it
needs. Hence to print a number with no minimum field width use :0 like this:

-->Print 1:0, CR, 1234:0, CR, -56:0
1
1234
-56

If the colon is omitted the default field width of 6 places is used:

-->Print 1,CR,1234,CR,-56,CR
 1
 1234
 -56

If a negative field width is used, the number is printed in the same number of places as if the
number was positive, but leading zeros are used instead of spaces to pad out the number. For
example:

-->Print 1:-6,CR,1234:-6,CR,-56:-6,CR
000001
001234
-00056

30: Colon

Copyright © 2009-2021 Venom Control Systems Ltd

Formatting Floats

There are three ways of formatting floating point numbers. The type of format applied to the
number depends on how many colons are used.

: General

When just one colon value is given it simply specifies the total fieldwidth the number should be
printed in. (If no colon is used then the default Float fieldwidth of 13 is applied).

Beyond that, the formatting is dependant on the value of the number, but will generally aim to
represent the number in the most precise form possible.

-->Print 1.234,CR,10.324,CR,100000.0:11,CR,0.123,CR,1.123E8:16
 1.234
 10.324
 100000
 0.123
 1.123E+08-->

: : Fixed Point
When two colons are used, the floating-point number is printed in ‘fixed point’ format. The first
colon value gives the total fieldwidth and the second the precision (the number of digits after the
decimal point). The fieldwidth will be exceeded if it is too small to represent the number correctly
with the specified precision.

-->Print 3.1415:15:3, CR, 3.1415:9:3, CR, 3.1415:3:3
 3.141
 3.141
3.141

If the fieldwidth is negative, then the number will be printed with leading zeros.

: : : Exponential

When three colons are used the number is printed in exponential notation. The first colon value
gives the total field width to print in. The second gives the precision to use. The third specifies
exponential notation, irrespective of its value. Four characters are used to print the ‘E’, the
exponent and its sign. The fieldwidth will be exceeded if it is too small to represent the number
correctly with the specified precision. For example:

-->Print 3.1415:15:3:5, CR, 12.34:9:3:3, CR, 0.0019:3:3:3
 3.141E+00
1.234E+01
1.900E-03-->

IP dotted-quad formatting

If you use the string “IP” to format any Venom variable, it will be printed in the standard IP
address format of a ‘dotted quad’:

31 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Print 1234567890:"IP"
73.150.2.210-->

See also 'Print message' in the Index for printing each object type.

Formatting Objects

You modify how an object should print itself by sending print format parameters. These follow
the object in the print list and are separated by colons. Each object type attaches its own
meaning to the parameter values. For example, to print a Timer’s period as HH:MM:SS, the
following format is used:

-->Print timer_object :1 :1
01:30:00

For more information, see the Print message for each object type in Object Types.

Formatting strings

You can use the : operator to specify how a string is to be printed. One colon, :n, will print
the leftmost n characters from a string. If the number is negative, you get the rightmost n
characters:

-->str := "abcdefghij"
-->Repeat 10 Print "[",str:Index0-5,"]"
[fghij][ghij][hij][ij][j][][a][ab][abc][abcd]-->

Using two colon operators allows you to print any portion of a string you wish to, and
additionally, will pad out the printed portion with space characters to a required width. This
allows you to both select portions of the string and to implement scrolling text.

The first colon specifies where to start printing within the string, and the second specifies how
many characters to print. If the start position is negative, or more characters are requested than
are in the string, then space characters are printed.

-->Repeat 10 Print "[" , "abcdefghij" :Index0-5:10 , "]" , CR
[abcde]
[abcdef]
[abcdefg]
[abcdefgh]
[abcdefghi]
[abcdefghij]
[bcdefghij]
[cdefghij]
[defghij]
[efghij]
-->

You can use colons to print text Buffers or String objects in exactly the same way.

Incidentally, you may find it useful to know that string constants understand the all same

32: Colon

Copyright © 2009-2021 Venom Control Systems Ltd

messages as String objects.

,

... <list_item> , <list_item> ...

Commas separate items in a parameter list, a print list or other lists.

Parameter lists are used when calling procedures, sending messages or in Make statements or
similar keywords. The use of commas in parameter lists is optional. However, you must use
commas to separate items in a Print list.

fred(a,b,c,d)
Make vt100 TerminalFilter("VT100", serial2)
k:=keys.Key(3,1)
or
fred(a b c d)
Make vt100 TerminalFilter("VT100" serial2)
k:=keys.Key(3 1)

Comma may be used to separate items in Local declarations.

?

? <Int> <Int>

?? <Int> <Int>

???? <Int> <Int>

The ‘query’ operators give direct access to the memory of the controller.

They may be used to access hardware registers, or directly read and write to the RAM or flash
memory.

The size of values read or written depends on the number of ? symbols used. One ? reads and
writes single bytes, ?? read and write 16-bit half words, and ???? read and write 32-bit
words.

Hence to print the byte located at $F0 in hexadecimal:

Print ~? $F0
To set the half-word at $8100 to $FF00:

??$8100 := $FF00
Note that the VM2 has a 'Little endian' processor, so in multi-byte accesses the least significant
byte is at the lowest memory address. In the previous example, $8100 is set to $00 and $8101

33 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

is set to $FF.

To transfer 4 bytes from $8100 to $8104:

????$8104 := ????$8100

When you use the ? operator, no checking is done on what is being accessed, so using it
carelessly is dangerous. In particular, writing to (or even reading) the wrong address can
cause unpredictable errors in apparently unrelated parts of the system.

Multi-byte accesses are done atomically with respect to tasks and interrupts, so ‘skewed’
reads or updates will not occur.

!

! <Pointer> Any

! <Pointer> := Any
(! <Pointer>)(<parameter list>) Any

The ! (or 'pling') operator is used to follow a pointer, either to read the value of the thing
pointed to, or to write it.

Using Pointers

Pointers are created with @ followed by the name of a global or local variable. ! is used to
follow the pointer, and so access the variable:

-->a := 99
-->p := @a
-->a := 100
-->Print !p,CR
 100
-->!p := 101
-->Print a,CR
 101

Pointers are usually used for ‘pass-by-reference’ parameters, getting multiple results from a
function and so on.

Procedure Pointers

Procedure pointers are really the same as other pointers. You just use @ with a procedure name instead of an ordinary variable name. ! is used to call the procedure, with parameters if necessary. You may need to use parentheses to get the correct operator precedence. Please refer to the Venom Tutorial for a full treatment of procedure pointers.

In the following example, ! is used to call a comparison routine to decide on the ordering of a sort.

;Used for an ascending sort
To ascending(a,b)

34!

Copyright © 2009-2021 Venom Control Systems Ltd

 Return a<b
End

;Used for a descending sort
To descending(a,b)
 Return a>b
End

;Sorts the array it is passed, using the function pointer
To sort(data, func_ptr)
 Local swapped,temp
 Do
 [swapped := False
 Repeat data.Length - 1
 [If (!func_ptr)(data.(Index0),data.(Index)) IsFalse
 [temp := data.(Index0)
 data.(Index0) := data.(Index)
 data.(Index) := temp
 swapped := True
]
]
]
 While swapped
 Return data
End

Array costant_data (8,10)
 7,4,2,6,1,3,9,5,8,10
End

Here we test the sorting procedure at the command line:

-->cpy := costant_data.copy
-->sort(cpy, @ascending)
-->Print cpy
 1
 2
 3
 4
 5
 6
 7
 8
 9

35 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 10
-->sort(cpy, @descending)
-->Print cpy
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
-->

Indirect message calls

<object>.!(<MessageRef>)[(<parameter list>)] Any

You can call messages indirectly using the ! symbol. The syntax is shown above.

For example:

msgref := @.Get ; Form a reference to a message
object := New Buffer(Int)
val := object.!(msgref) ; Send a message using the reference.

Note that the () around the message reference expression are mandatory.

If you want to send parameters to the message call then you can do it like this:

object.!(msgref)(p1, p2)

The message reference can be any expression so long as it evaluates to the reference to a valid
message.

For example you could store message references in an array:

object.!(array_obj.(Index0))(p1, p2)

Current limitations

You can't assign to an indirect message send.

All indirect message sending is 'polymorphic' - this means you can't assert the class being called.

36@

Copyright © 2009-2021 Venom Control Systems Ltd

@

@ <global name> Pointer

@ <local name> Pointer

@.<message name> Int

The @ symbol is used to create pointers. These pointers are used to pass information to
procedures or messages about how to fetch or set a result, without fetching it or setting it
immediately. The detailed uses of this are described under each pointer type separately.

Creating Pointers

A pointer will point to a variable. A pointer is created by prefixing the name of the variable with
@. The pointer may be followed (or de-referenced) by using the ! operator.

One common use of pointers is for 'pass-by-reference' parameters for procedures. Normally
the value of a parameter is calculated and this value is passed to the procedure. The procedure
cannot 'reach back' and change the value of the original variable. For example:

To fail_to_swap(a,b)
 Local temp
 temp := a
 a := b
 b := temp
End

-->x := 1
-->y := 2
-->fail_to_swap(x , y)
-->Print x,y,CR
 1 2

Setting the parameter variables a and b in fail_to_swap does not have any effect on x or
y, since they are local to the procedure. In some languages, such as Pascal, it is possible to
define a procedure so that it can reach back to the variables in the parameter list. In others, such
as C, you need to pass pointers to the procedure, and use pointer operations to read and set the
variables. Venom is like C in this respect.

The swap routine written properly in Venom would be:

To swap(a,b)
 Local temp
 temp := !a
 !a := !b
 !b := temp
End
-->x := 1
-->y := 2

37 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

-->swap(@x, @y)
-->Print x,y,CR
 2 1

This ability to set the caller's variables can also be used to return more than one result from a
function.

Note: If pointers to local variables are taken, it is important to ensure that the lifetime of the local
variable they point to is not less than that of the pointer, otherwise you will be left with a 'dangling
pointer’. This means that the pointer to a local variable must not be used after the procedure
that created the local variable has finished. There is no such problem with pointers to global
variables.

Memory addresses

The pointer created by using @ is not the memory address of the variable. However you can find
the memory address by converting the pointer to an integer using As Int.

You can use memory addresses to access memory directly using the ? operator.

Creating Procedure Pointers

A procedure pointer is a a pointer to a procedure, and is created by prefixing the name of the
procedure with @.

To square(x)
 Return x * x
End

-->operation := @square

Procedure pointers are most often used where one of a number of similar procedures might be
called with the same parameters.

See here for how to use a procedure pointer.

Message references

@.<message name> Int

Message references allow you to effectively take a pointer to a message, so that you can send a
message to an object indirectly. A message reference is a 16-bit integer.

To get a message reference put the symbols @. in front of a message name. For example:

msgref := @.Put
msgref2 := @.MyMessageName

38:=

Copyright © 2009-2021 Venom Control Systems Ltd

:=

<LHS> := <Any value>

This is the assignment operator, sometimes called becomes equal to.

<LHS> indicates a valid Left Hand Side expression and is one of

<variable name>

! <pointer>
<Object> . <message> (<parameter list>)
? <Int memory address>

The assignment operator may be used to set the value of variables, class members, active
variables (i.e. a message to an object that may be assigned a value), or internal memory locations
.

()

Parenthesis, or round brackets, are used in three different contexts in Venom2:

Evaluation order

(<Any>) Any

Parentheses, or round brackets, are used to force the evaluation of an expression before normal
operator precedence. Parentheses may be nested, that is you may put parentheses inside other
parentheses.

For example

-->Print 3*4+5, 3*(4+5), 4*(3-(4-5)),CR
 17 27 16
-->

Any legal expression of any type can be put in parentheses.

If you need to start a command with parentheses then you need to use square brackets to
indicate the start of a command (this is a limitation of not having statement separators like ; in
C):

[(!pointer).Put(0)]

39 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

The maximum level of parenthesis nesting is currently set by the stack space available to the
Venom compiler and is not defined as yet.

Parameter list

(<Any> , …)

Formal parameter list

(<Local name> , …)

Round brackets are used to indicate both formal and actual parameter lists.

A formal parameter list follows the procedure name in a procedure definition. It lists the names
of the parameters to the procedure.

An actual parameter list follows a procedure name in a call to a procedure. It lists the values to
pass to the parameters of the procedure.

In both formal and actual parameter lists the commas separating the parameters are optional.

fred(1 2 a * b + c)
fred(1 , 2 , a * b + c) ;equivalent.

The maximum number of parameters you may pass is 253. Each local variable used will
reduce the number of parameters available by one.

[]

Square brackets are used in two different contexts:

1. Grouping statements

2. Indicating optional parameters to a procedure

Grouping statements

[<statement> …]

Square brackets are used to group statements into blocks. The block is then equivalent to a
single statement.

Because all 'white space' (spaces, tabs, carriage returns) is treated the same during parsing, this
is the only way Venom knows which statements should be blocked together.

As an example, the following two pieces of code do quite different things!

40[]

Copyright © 2009-2021 Venom Control Systems Ltd

If smoke_detected
[
 fire_alarm.On
 sprinkers.On
]

If smoke_detected
 fire_alarm.On
 sprinklers.On

In the latter (incorrect) case, the sprinklers will turn on whether or not there is any smoke.

Indicating optional parameters

Procedures in Venom can be defined with optional parameters. The optional parameters are
indicated by putting a pair of square brackets around them. The optional parameters must
always be at the end of the parameter list. All the parameters to a procedure may be declared
optional.

For example, in proc1 there are two optional parameters: b and c. Parameter a must be
supplied.

To proc1(a,[b,c])
...
End

In proc2, all the parameters are optional:

To proc2([a,b,c])
...
End

The Venom value ParamCount tells you how many parameters have been supplied to a
procedure when it is called. The Venom function Parameter(n) returns the value of the nth
parameter.

Parameters that were not supplied by the caller are set to the value integer zero.

. [Dot]

<Object expression> . <Message> (<param list>) Any

<Object expression> . <Message> (<param list>) := Any

The dot operator is used to send a message to an object.

See each of the object types for the list of message they accept, and what each one does.

(Note: the same character is also used in floating point numbers to represent the decimal point).

41 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Active Variables

An active variable is a notional value 'inside' an object which can both be read, and also written
using :=.

An example is Digital’s message .Asserted, which can be used both to read and write the
state of a Digital channel:

-->Print Motor_Actuator.Asserted, CR
 1
-->Motor_Actuator.Asserted := False

Some active variables can also take parameters, like Buffer.Element(p).

For example, to set the tenth element of a Buffer called ‘values’ to 99, then read it out again:

-->values . Element(9) := 99
-->Print value . Element(9)
 99

Indirect message send

You can send a message indirectly by taking a reference to it, and later sending the message
indirectly using the reference.

; [Comment]

; <characters>

<characters> is a list of any characters apart from Carriage Return.

The semi-colon symbol is used to introduce a comment into the program. The compiler will
ignore text from the semi-colon until the start of the next line.

Comments serve the very important purpose of documenting the program, both for the author
and anyone maintaining it.

Comments do not affect the code size or execution speed of your programs.

Abs

Abs <Int expression> Int
Abs <Float expression> Float

The ABS operator returns the absolute value of its operand; in other words, it makes it positive.

For example:

-->Print Abs 99, Abs -99
 99 99

See operator precedence for which operators are evaluated first.

42Abs

Copyright © 2009-2021 Venom Control Systems Ltd

The absolute value of the most negative integer ($80000000) has no representation as a
positive number within the 32-bit values allowed in Venom2. 0 is returned.

Acos

Acos <Float expression> Float

The Acos operator returns the inverse cosine of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Cos Sin Tan Asin Atan

All

All is used only in conjunction with other keywords, such as List, Stop, Global.

And

<Int expression> And <Int expression> Int

The And operator returns the bit-wise And of its two operands.

A bit is set in the result if both of the corresponding bits in the operands are set. Because of this,
And is often used to clear one or more bits while leaving the rest alone. For example

Print ~~%101010 And %001100
 1000

Internally, what happened was this 32-bit operation:

And 0000000 00000000 00000000 00101010
0000000 00000000 00000000 00001100
0000000 00000000 00000000 00001000

See operator precedence for which operators are evaluated first.

See also Or, Eor, Inv, True, False

And is a numeric operator - if you really want a logical operator use AndAlso.

43 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

AndAlso

<Int expression> AndAlso <Int expression> Int

The AndAlso operator is used to determine if two expressions are both non-zero.

If both of its operands are non-zero then it returns a non-zero value.

If either of its operands are zero (False) then it returns zero (False).

The AndAlso operator is also 'lazy' or 'short circuiting': if the first operand is zero (False) then it
doesn't go on to evaluate the second operand, thus enabling efficient evaluation, and other
benefits.

It is guaranteed to evaluate its left hand expression before its right hand expression.

AndAlso is often used in the expression of an If or While construct to make a more complex
condition, e.g.

If cows_home AndAlso its_milking_time
 machine . On

See operator precedence for which operators are evaluated first.

 OrElse, And

Any

Any

Any is used to specify a data type as 'any type' when creating a Buffer or defining a Class
member.

For example:

Make bufferOfAny Buffer(Any)

or:

Class MyClass
 MyMember Any
 ...
End

44Array

Copyright © 2009-2021 Venom Control Systems Ltd

Array

Note: the keyword Array can be used in two contexts:

1. To define constant arrays - i.e. lists of data values that are fixed

2. With Make or New to create variable Arrays that can hold variable data

Here we will look at constant arrays:

Array name (<type> [, Int Const size])
 <type> Const data ,
 <type> Const data ,
 …
End

A Venom Array is a data structure - i.e. something that holds a collection of data. The data
held by an array is all of the same type, and there is a fixed amount of it.

The kind of array considered on this page holds constant data - that is the values of the data
never change during the lifetime of the program.

Constant arrays are created at compile time - i.e. they are written into your program code
alongside, and in a similar way to, procedures. For example, a section of your code might look
like this:

...
To simple_procedure
 led.On
End

Array simple_array (Int 8,5)
 1,2,3,4,5
End
...

Array names

Arrays are given a name, which has to obey the same rules as any name in Venom.

Parameters to Array

After the Array keyword, and the name of the array, some parameters are supplied in
parentheses:

ARRAY name (type , size)

45 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

type specifies the data type of the array elements:

Type Element data type Range of values element can
hold

Int 8 8-bit integer (unsigned) 0 to 255

Int 16 16-bit integer (signed) -32768 to +32767

Unsigned Int 16 16-bit integer (unsigned) 0 to 65535

Int or Int 32 32-bit integer (signed) -2,147,483,648 to
2,147,483,647

Float Floating point (IEEE single
precision)

~ ±1.0E±38, ~7 digtits of
precision

String String constant Any string constant

@dummy* Pointer to a global Any pointer to a global variable

* or any pointer to a global variable.

size (an integer) specifies the number of items in the array - i.e. how much data it will hold. size
is optional - if you don't supply size then the array is made as big as is needed to hold all the data
you list.

Data items

After the array parameters have been supplied, the data that fills the array is listed. Every bit of
data must be of the type specified, e.g. integer or floating point.

If there are fewer elements than were declared with size, then the array is filled to the end using
the value of the last item. If there are too many items, then a warning is given.

You must use commas to separate negative numbers or quoted strings or you will get strange
results.

Accessing the array

Once created, a constant array is an Array object, and may be accessed using the same
messages as for any kind of array; see the Array object.

Examples

Here are some examples of small Arrays.

;An array of 8-bit integers
Array lookup_data (Int 8)

46Array

Copyright © 2009-2021 Venom Control Systems Ltd

 2 , 3, 5, 7 , 6
End

;An array of six string constants, with the last 4 being the same.
ARRAY phrases (String, 6)
 "Hello",
 "Goodbye",
 "Ciao"
End

;An array of procedure pointers
Array handler (@dummy)
 @first_proc,
 @second_proc,
 @third_proc
End

See here how to call procedure pointers.

As

<Float> As Int Int
<Pointer> As Int Int
<Int> As Float Float

The As operator is used to 'cast', or change the type of, a value.

The As Int operator takes a floating-point number, and returns the integer part of it, truncating
towards zero. For example:

-->Print 2.7 As Int, -2.7 As Int
 2 -2

If As Int is used on an integer, it has no effect.

As Int will also convert a value of type Pointer to an integer, in this case representing the actual
address of the thing pointed to in memory.

For example, in the following code, addr is set to the address in memory of the value of the
global variable var.

var := 1.0
ptr := @var
addr := ptr As Int

The As Float construct takes an integer and gives the floating point representation of it. For
example:

-->Print 23 As Float

47 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

23.000000
If As Float is used on a floating-point number, it has no effect.

Note: Information may be lost when casting in either direction. As Int obviously loses the
fractional part of the number, but also As Float will lose precision from integers larger than
~16,777,216.

See operator precedence for which operators are evaluated first.

The maximum float which can be cast to an integer for general calculation is 2.1474828E9.
The maximum float that can be cast to an integer for storage in a variable or passing to a
procedure or message is 1.0737418E09. The maximum integer which can be cast to a float
to be stored in a variable without losing precision is around 17,000,000.

See also Number limits

Asin

Asin <Float expression> Float

The Asin operator returns the inverse sine of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Cos Sin Tan Acos Atan

Assignment

Assignment Int

Assignment is a special integer value that is zero when an active variable method is being
read, and non-zero when an active variable method is being written to.

Atan

Atan <Float expression> Float

The Atan operator returns the inverse tangent of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Cos Sin Tan Acos Asin

AutoDestruct

AutoDestruct

This is an attribute that may be applied to a group of local variables in a procedure (or a
method), or to a single member of a Class. It's syntax is slightly different in each case.

48AutoDestruct

Copyright © 2009-2021 Venom Control Systems Ltd

AutoDestruct is used to indicate temporary objects which should be removed from
memory when the entity that holds them is removed.

AutoDestruct Local variables

AutoDestruct is applied to a list (or part of a list) of Local variables to indicate that they
hold objects that should be destroyed when a procedure ends.

Any Local variables declared after the AutoDestruct keyword will be examined when the
procedure ends. Each of them that holds an object will be sent the message Die.

Local variables listed before AutoDestruct are treated as normal: i.e. they are not
examined, and objects they hold will not be destroyed.

This is particularly useful if you have to create temporary objects in your code, and don’t want to
have to think of all the possible places or mechanisms via which your code might exit the
procedure, at each of which you would have to explicitly kill all the temporary objects.

Example

To proc
 Local a, b, c
 Local d
 AutoDestruct ; Objects held by the LOCALs below will be removed later
 Local temp_string := New String(100) ; Temporary String object

 If condition
 Return 0

 If condition2
 Exit 100

 Return 1
End

AutoDestruct of local variables works in conjunction with End, Return, Try, Exit.

It does not act when an error stops a task, or when CTRL-C breaks into the main task.

When to use AutoDestruct

There is a simple rule that generally tells you when to use AutoDestruct on a local
variable:

If the variable is an object created inside the procedure, then use AutoDestruct

If the variable is an object that was created outside the procedure, then don't use

49 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

AutoDestruct

 If you use AutoDestruct indiscriminately you will slow down the speed of Venom,
and you may even end up removing objects that should not be removed (which will give the
runtime error Message to dead object).

 See also New, Zero-memory objects, Garbage Scanner

AutoDestruct Class members

<member name> <type> Autodestruct

AutoDestruct is an attribute you can apply to any member of a Class that may hold an
object.

When a Die message is sent to a user-defined Class object (and the Die message hasn't been
over-ridden) any member that has the AutoDestruct attribute will be sent a Die message
automatically. This is used to simplify 'garbage collection' when using Classes.

Class MyClass
 ID Int
 MyOwner Class
 MyList Buffer AutoDestruct
 ...
End

When to use AutoDestruct

There is a simple rule that governs when to use AutoDestruct on a Class member:

If the member object is created inside the Class (e.g. within Initialise), then use
AutoDestruct

If the member object is passed into the Class from outside, then don't use
AutoDestruct

Await

Await <Int expression>

The Await command waits indefinitely while the condition is false (i.e. zero). When the condition
becomes non-zero, program execution resumes at the next statement in the program. For

50Await

Copyright © 2009-2021 Venom Control Systems Ltd

example:

Await the_cows_come_home
milking_machine . On

While it is waiting Await will swap tasks.

It is functionally equivalent to, but slightly more efficient than,

While <condition> IsFalse
 Swap

A task waiting in Await ‘swaps out* ’ as soon as it finds the expression is false (zero).
Hence the overhead of a task waiting in Await is the time it takes to calculate the
expression each time it gets scheduled. Await also allows the task manager to put the
controller core to sleep, saving power.

* ‘Swapping out’ means that the task passes control to the task manager which will find
another task to run, or carry on with the current task if there are none.

Swap

When Await is waiting for an event that is driven by interrupts it may sometimes wait up to
1 mS longer than necessary, dependent on the exact timing of other interrupts and/or the
time taken by other tasks. To avoid this you can use Until or While instead of await:

Until condition []

Base

Base.<memberName>

The Base keyword is used to specify access to a member of the base class.

For example,

Class baseClass

 To method
 ...
 End

End

Class myClass : baseClass

 To method
 ...
 Base.method ; Call method in the base class.

51 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 ...
 End

End

Note: if there is no explicit base class then the message will be sent as a Class-default message.

See also This, Derived

Beep

Print ... BEEP ...

The BEEP print item is used to cause an audible warning on the device printed to. It is
equivalent to ASCII character 7 (BEL).

Break

Break

Break is used to break out of loops. Break will immediately exit to the next statement past the
end of any loop.

Every 1000
[
 done_it := do_something
 If done_it = True
 Break
]
carry_on

When done_it is true, then execution will immediately carry on at carry_on.

See also Forever, Every, While, Do, Repeat

BS

Print ... BS ...

The BS print item is used to move backwards one character on the device printed to. It is
equivalent to ASCII character 8.

52BS

Copyright © 2009-2021 Venom Control Systems Ltd

This character is intended to be non-destructive - i.e. it moves back one space, but does not rub
out the previous character. To do a destructive delete operation, it is safest to send a BS, then a
space, then another BS.

Call

Call (<Int address> , <parameter list> , ...) Any

Call will call external code written in C or Assembler. Call takes any number of
parameters, but the first one must be the address of the code to call, e.g.

Call (address_of_my_code)
Your called code should expect to receive one parameter, equivalent to a void* in C. Your
code is responsible for abiding by the ARM procedure call standard.

The parameter is a pointer into the Venom stack, which will have been loaded with the values of
the parameters to Call, except that the code address (the first parameter) has been
overwritten with the number of Venom parameters sent to Call. This first parameter position
is where you should put any result you wish to return from your external code, via Call. Note
the Venom stack grows upwards, i.e. it starts at low memory.

Example

Call (address , A , B , C)
Would put the following on the venom stack

 C ; Top of stack
 B
 A
 4 ;No. of Params and Return result.

Each Venom value on the Venom stack is 8 bytes wide. The first 4 bytes are the value (LSB
first on a 'Little-endian' processor). The other 4 bytes hold the type and other information.

Byte 0 1 2 3 4 5 6 7
 [xx][xx][xx][xx][--][--][--][TYPE]

Example

This C function multiplies two numbers and sends the result back to Call.

long mult2ints(venom_value * stk)
{
 /* Do the multiplication */
 * stk = (stk + 1)->value.as_int * (stk + 2)->value.as_int;
 /* Set the type of the result to integer */
 * stk -> val_type = VENOM_TYPE_Int;
}

53 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

See below for the definitions used.

To call this code we can use:

#define mult2ints $87000001 ; The address of the C function.
result := Call (mult2ints, 10, 20)

 Our CBuilder application can create a list of #Define statements for the absolute
addresses of symbols in your external C source code.

Definitions

Here is the structure of a Venom variable:

typedef struct
{
 union
 {
 long as_int; /* The actual value of an int… */
 float as_float; /* … or access it as a float */
 void * as_pointer; /* or a pointer… */
 unsigned long long_word;/* or one 32-bit word… */
 unsigned short word[2]; /* or two 16-bit words… */
 char byte[4]; /* or four 8-bit bytes. */
 }value;
 char res1; /* Reserved for future use */
 char res2;
 char write_protect; /* If set, don't allow writes */
 char val_type; /* The data type. */
}venom_value;

#define VENOM_TYPE_INT 0 /* The Type-value for integers */

Task Swap Timing

Internally the Venom task manager relies on each task electing to 'swap out'. So as not to
contravene Venom's task latency specification your external code should not run for more than
1mS before allowing other tasks to run.

A Venom Operating System call/macro is available: SWAP_IF_I_MUST. This should be
included in long-duration loops so your code task-switches when necessary.

54Case

Copyright © 2009-2021 Venom Control Systems Ltd

Case

Select Case <Int expression>
 Case <Int Const> , …

 <statement>
 …
 Case Else

 <statement>

The Select Case construct allows the choice of one of many actions based on the value of an
integer expression.

Case is used in three distinct places: immediately after the Select keyword that introduces the
construct; at the start of each numbered action; and at the start of the Case Else, or default,
action.

Catch

See Try, Exit, Appendix E: Error messages

Centre

This special print keyword centre-justifies text in GraphicsLCD.

 Left, Right

Char

Char

Char is used to specify the data type as 'character' when creating new buffers and files that
contain text.

For example:

Make textBuffer Buffer(Char)
f := fs.Open("MyTextFile.txt", Char)

55 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Chr

Print ... Chr <Int expression> ...

The Chr print item is used to print 8-bit characters.

The first 128 8-bit characters are often interpreted using the ASCII standard. A table of ASCII
values is given in an Appendix.

The second 128 characters (from 128 to 255) are not coved by the ASCII standard, and are
likely to be interpreted in widely differing ways by different systems.

The character given must be between 0 and 255.

See also Print

Class

The keyword Class allows you to define your own object classes.

It is may also be used as the object when you want to send a 'class default' message.

Class - defining

The keyword Class is used to define new object classes. It is followed by the class's name, a
list of members, and it is terminated by the keyword End. Here is a very simple example of a
class definition:

Class Person
 Name String
 Age Int

 To Initialise(n, a)
 Name := n
 Age := a
 End
End

You can create objects of this new class using Make or New in the usual way.

p := New Person("Fred", 42)
Make and New both create a new object of the given class, and then send that empty object
an Initalise message, passing on the parameters from Make or New.

Members

A Class is made up of a list of members, each of which has a different name, type and function.

Members are normally declared with a member name followed by a data type and optional

56Class

Copyright © 2009-2021 Venom Control Systems Ltd

attributes

Member names may be any normal Venom variable name, including the built-in Venom message
names, such as Reset, Put, Name, etc.

Member types

Member data types may be any of the following:

Type specifier Type of data stored in the member Default initial value

Int Integer (32-bits, signed) 0

Int 32 Integer (32-bits, signed) 0

Int 16 Integer (16-bits, unsigned) 0

Int 8 Integer (8-bits, unsigned) 0

Float Floating point number (IEEE Single
precision)

0.0

Any built-in Venom object
type*

Reference to an object Uninitialised

Class Reference to an object of a type
defined by Class

Uninitialised

Any Any Venom type (number, object,
pointer, etc)

Nil

New String(capacity)String Empty String

New Array(type, length)
(type must be numeric)

Array Array filled with
integer or floating
point zeros.

*Note that the types Digital and Analogue may be specified but will be converted
to Any because of the way they are represented internally.

Each member has a specified data type; all values assigned to that member will be type-
checked at runtime.

Integer values won't be range checked, but simply truncated.

Member attributes

Members are 'Public' by default, but you can prefix any member (or method) with Protected or
Private to limit its accessibility.

You can also apply the attribute AutoDestruct to a member, to implement 'garbage
collection' in tree-like structures of objects.

57 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Default initial values

The default initial values for different member data types are shown in the table above. These are
the values automatically assigned to members when an object is first created. They may be over-
written by your own Initialise method.

Methods

Methods are a special kind of member in that they are procedures rather than values. They are
introduced with To, just like normal procedures. Methods are written in normal Venom code -
see below for minor differences. Here is a simple class with one method:

Class Person
 Name String
 Age Int

 To Print
 Print "I am a person called ", Name, CR
 PrintF("I am %i years old\n", Age)
 End

End

Methods - differences from normal procedures

Methods are very similar to normal Venom procedures. There are some small differences:

1. The keyword This may be used inside a method to refer to the current instance of the
class.

2. The Keywords Base, Derived and Class may be used inside methods.

3. Methods may be defined as 'active variables'. The keyword Assignment may be
used inside active variable methods to determine whether a read or a write is in
progress.

4. Initialise methods implicitly return the value of This (the current object).

5. The code of a method is usually indented in the file to indicate it is inside the enclosing
Class.

58Class

Copyright © 2009-2021 Venom Control Systems Ltd

Special methods

Print

When an object is printed it is sent a message called Print. If you want your Class to print
itself in a particular way then you should define a method called Print. Inside the Print
method you can use Print and PrintF statements to generate the text output. These will
send their text to the current print output stream - ie. the output stream defined by the printing
command that printed the object. In the following snippet, the Person object p is printed to a
String object, so the text output (generated by the Print and PrintF commands inside
the Person's Print method) will be sent to the String.

Class Person
 Name String
 Age Int
 To Print
 Print "I am a person called ", Name, CR
 PrintF("I am %i years old\n", Age)
 End
End

Make p Person("Jim", 30)
Make str String(100)
Print To str, p

You can use Print To x or x.PrintF inside a Print method, for example to debug the
Print method; these statements will direct their print output to x, independently of the other
print output.

AcceptPrintJob

This method is called implicitly when you print to an object, using either Print To or
PrintF. The AcceptPrintJob method should always take a single parameter, which is
a PrintJob object (PrintJob objects only ever occur in this context). You can pass the
PrintJob object on to another object as the parameter to an AcceptPrintJob
message, or you can examine the contents of the PrintJob by sending it messages such as
Get, Queue and Status.

Class-default messages

Any class defined with Class recognises the set of Class-default messages.

Terminating the class definition: End

A Class definition is terminated with End.

59 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Records

You can use classes as data templates, or records, when storing data in files and SafeData. See
the Venom2 Tutorial for a how to do this.

Inheritance

A new class can inherit the properties of an existing class. This is specified by a colon after the
class name, followed by the name of the 'parent' class. The following class, Employee, inherits
all the members and methods of the Person Class, but also adds the integer PayRollNumber.
So an Employee has a Name, and Age, a method called Print, and also a PayRollNumber.

Class Employee : Person
 PayRollNumber
End

Overriding members and methods

If a class defines members or methods with the same name as in a parent class then the new
member or method overrides the old one.

Class Employee : Person
 PayRollNumber
 To Print ; Override Print.
 Print "My Pay Roll Number is ", PayRollNumber
 End
End

This means that if you simply send a message to an object of the new class you will by default
invoke the new member/methods. However you can access the base class's member/method
instead by using the base keyword.

...
To Print ; Override Print.
 Base.Print ; Print as a person first.
 Print "My Pay Roll Number is ", PayRollNumber
End
...

'Inheriting' Venom base Classes

You can for arrange any message sent to a Class-based object to be passed any one of the
Class's members - this is called message redirection, and it allows you to emulate the inheritance
of a Venom base Class, such as String, Array or Buffer.

60Class

Copyright © 2009-2021 Venom Control Systems Ltd

Active Variable Methods

To MethodName [(<param list>)] := <name>
 ...
End

Methods of classes can be active variables. You can declare that a method is an active variable
by putting := and a parameter name after any parameter list, or after the method name if there
are no other parameters. For example

Class MyClass
 member Int

 To AcVar := val
 If Assignment
 [
 member := val
]
 Else
 [
 ...
 Return member
]
 End

 ;This one uses two parameters as well as the assigned value
 To AcVar2(a, b) := val
 If Assignment
 [
 member := val
]
 Else
 [
 ...
 Return member
]
 End

The name after the := behaves just like an optional parameter. A method that is an active
variable can't have any other optional parameters.

You can detect whether the call to the method is 'reading' or 'writing' by using the keyword
Assignment to detect whether the method is being read or written to.

Return value

When reading an active variable method be sure to return a result using Return.

61 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

When writing there is no need to return a value.

Message redirection

It is possible to arrange for a defined set of messages to a Class to be passed on (redirected) to
a particular member (or members) of the Class. This is called message redirection. Message
redirection is declared by listing the set of messages to be redirected after the Class member
they are to be redirected to, each prefixed by a dot:

Class XYString
 XPos Int
 YPos Int
 ; A String member with redirected messages:
 str String
 .Put
 .Get
 .Empty
 .Print
 .AcceptPrintJob
 .PrintF

End

In the example above, any of the listed messages, when sent to an instance of the Class, will be
passed on to the member str.

You can redirect messages to more than one member of a Class, but the sets of messages
should not overlap: if any message name appears more than once then the newer one overwrites
the older.

Current limitations

Currently, message redirection only works as seen from 'outside' the Class.

From inside the Class, or a derived Class, you can't refer to redirected messages as if they are
normal members of the Class, by their names alone. Instead you have to use explicit accesses,
for example like this:

str.Empty
str.Put("text")

Or you can use this version, which emulates an 'external' view of the Class, though it is a bit
slower:

Derived.Empty
Derived.Put("text")

However, these versions will not currently compile:

Empty

62Class

Copyright © 2009-2021 Venom Control Systems Ltd

Put("text")

This.Empty
This.Put("text")

Cls

Print ... CLS ...

The CLS print item is used to clear the screen of an output device. The text cursor is moved to
the home position.

See also Home, Print

Cos

Cos <Float expression> Float

The Cos operator returns the cosine of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Sin Tan Acos Asin Atan

CR

Print ... CR ...

The CR print item is used to move to a new line on the output device. Some output devices, such
as SerialPorts, Files and TCP connections, translate it into the characters 13, 10 (CR, LF).

If you want to embed a new line or carriage return character within a quoted string see escape
sequences.

See also Print;

63 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Delete

Delete <global name>

The Delete command is used to set the type of a global variable to 'un-initialised'. If the
variable refers to a procedure in RAM, its memory is released. If the variable refers to an
object, this will be sent the message ‘Die’ to recover any memory or other resources it held.

Note that Delete is not usually used inside a program, but is more often used on the
command line.

The name given must be a global name.

See also List Word

Derived

Derived.<memberName>

The Derived keyword is used to specify sending a message to a derived class.

For example,

Class baseClass

 To Action
 End

 To method
 ...
 Derived.Action ; Send the message Action to the derived class - not to the method above!
 ...
 End

End

Class derivedClass : baseClass

 To Action
 ...
 End

End

64Derived

Copyright © 2009-2021 Venom Control Systems Ltd

See also This, Base.

Div

<Int expression> Div <Int expression> Int

The Div operator divides the first operand by the second, giving the integer part of the result.
The operands and the result are always integers. Use ‘/’ if you want a floating point result.

See operator precedence for which operators are evaluated first.

See also /

Do

Do <statement> While <Int condition>

The Do construct is used to loop at least once, with the loop condition tested at the end of the
loop.

If more than one statement is used within the construct, they must be surrounded by square
brackets []:

Do
[
 shout("Hoi")
 lean_on(gate)
 Wait a_while
] While the_cows_come_home

The special loop count values Index0 and Index increment each time round the loop. These
values are available in the statement and in the expression.

You may terminate any loop in Venom with the Break command.

See also While

Else

If <Int condition> Then
 <statement>
Else
 <statement>

Else is part of the If ... Then ... Else ... construct, which is described in more detail under If. It is
followed by a statement, which is performed if the condition evaluated to the value 0 (zero).

65 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Else is also part of the Select Case construct.

End

To <procedure name>
 ...
End

~Or~

Program End

~Or~

Array <array name>(...)
 ...
End

End is part of the definition of a procedure, described in more detail under To. It serves to mark
the end of the procedure.

It is also used as part of the Program and Array constructs to mark the end.

Eor

<Int expression> Eor <Int expression> Int

Eor calculates the bit-wise exclusive-or of its two operands.

A bit is set in the result if either of the corresponding bits in the operands are set. Eor is often
used to flip one or more bits while leaving the rest alone. For example:

Print ~~%101010 Eor %001100
100110

Internally, what happened was this:

Eor
00000000 00000000 00101010
00000000 00000000 00001100
00000000 00000000 00100110

See operator precedence for which operators are evaluated first.

See also And, Or, Inv, True, False

66Every

Copyright © 2009-2021 Venom Control Systems Ltd

Every

Every <Int expression> <statement>

The Every command is used to repeat code at regular intervals. The period is specified in
milliseconds.

The special loop count values Index0 and Index increment each time round the loop. These
values are only available in the statement.

You may terminate any loop in Venom with the Break command.

If the statement takes longer to execute than the specified interval, Every will not attempt to
regain the lost time.

As soon as the statement has been executed, the Every command swaps tasks to allow other
tasks to run. If there are no other tasks ready to run, the processor core is put to sleep to
save power.

See also Forever, Wait

Exit

Exit <Int expression>

Exit is used to generate a 'user exception' - basically a deliberate runtime error - that will
immediately jump out of Try and may be handled by Catch.

Exception handling

Exit allows your program to 'escape' to a higher level to handle an event that can't easily be
handled at the point in the program where it happened. For example in a low level device driver
you suddenly find the device you are driving is no longer present, then you can jump right out of
the device driver.

Try
[
 complicated_device_driver_code_1
 If something_went_wrong
 Exit 103 ; our error code.
 complicated_device_driver_code_2
]
Catch exception
[
 Select Case exception
 ...
]

67 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Exit 0

If you use Exit with the value zero (0), then program control will exit from the Try/Catch
construction, but Catch will not catch the exception.

This can be useful for a simple way to jump out of nested loops, as well as having other uses.

Loop exit

Exit allows you to jump out of multiple layers of loop nesting, unlike Break which only breaks
out of one level of loop;

Try
[
 Forever
 [
 Every 10
 [
 If condition
 Exit 0 ; Jump out of the loops
]
]
]

Simulate runtime errors

Exit also allows you to simulate the effect of a runtime error:

Exit 1 ; Simulate CTRL-C

See also Try, Appendix E: Error messages

You can Exit with any integer in the range 0 - 255, but if you are using Exit to generate
your own exception values it will probably be useful to choose a range of number that us
outside the system runtime error codes. For example in the range 100 - 255.

Exp

Exp <Float expresssion>

The Exp function returns the value of ‘e’ raised to the power of an expression.

See also Log

68False

Copyright © 2009-2021 Venom Control Systems Ltd

False

False Int

False is a convenient constant exactly equivalent to integer zero.

See also And, Or, Eor, Inv, True

Float

<Int expression> As Float Float

Float is used as part of the As Float operator to convert the given value to floating point. See
As for more information.

It is also used as a type specifier in the Class construct and for Buffers and Files.

Font

Print … FONT <Int expression>

The FONT print item is used to set the character font of text on the device printed to.

See alsoGraphicsLCD.

Forever

Forever <statement>

The Forever command is used to repeat the following statement indefinitely.

The special loop count values Index0 and Index increment each time round the loop. These
values are only available in the statement.

You may terminate any loop in Venom with the Break command.

See also Every

Global

By default global variables are not accessible (i.e. they are out of scope) inside a class, and also
global variables are overridden by local variables or parameters with the same name.

You can override these defaults in two different ways:

69 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Enforcing a global name

Global.<name>

Here Global is used to force the compiler to see a global variable where the same name might
also be used for a local variable or a Class member.

For example:

Global.Width := 200
Note the use of a dot.

Accessing globals inside a Class

Global <name> , <name> , ...

Global may be used to list all the global variables that are to be accessible from inside a
particular class definition. Global must occur before any members or methods are declared:

Class MyClass
 Global lcd, touch, serial
 member Int

 To method
 Print To serial, touch.XPos, CR
 End
End

GotoXY

Print … GotoXY (<parameter list>) …

The GotoXY print item is used to move the cursor to a particular location on the screen on the
output device.

Print To glcd , GotoXY (10 , 40)

See also AlphaLCD, GraphicsLCD.

70Has

Copyright © 2009-2021 Venom Control Systems Ltd

Has

<user defined object> Has <message name> Int

The Has <name> postfix operator allows you to determine at runtime if a particular user
defined object has a particular member or method.

Has will return True (1) if the object accepts the message, or False (0) if not.

If the first parameter is not a user defined object (e.g. it is an object of one of the pre-defined
classes, or an integer, say) then Has will throw a type mismatch error.

Example

If obj Has Reset
[
 ...
]

Help

Help <anything>

Help followed by a global variable name tells you something about what that variable contains.
This is particularly useful for objects.

Help can also give information on keywords, etc, but these functions are now better supplied
within the VenomIDE development environment.

See also Print, List

Home

Print Home

The Home print item is used to set the cursor position to the top left on the output device.

For example:

Print to lcd, Home, "Hello world"

See also Print

71 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

If

If <Int condition>
 <statement>
Else
 <statement>

The If ... Else ... construct is used to conditionally execute a statement, or to choose between
two statements, on the basis of the result of an expression (the 'condition').

If the condition is not False (ie. True or any non-zero integer), the first statement is executed. If
the condition is False (i.e. integer zero), the statement following Else is executed.

The Else portion is optional.

For example:

To count10
Repeat 10
[
 If Index=5
 Print " Five"
 Else
 Print Index
]
End

-->count10
 1 2 3 4 Five 6 7 8 9 10

Else association

Note that if you have nested If constructs then any Else statement will be associated with the last
If. The example below won’t work in the way the indentation seems to imply:

If temperature < 23.5
 If switch.Asserted
 heater. On
Else
 heater. Off

To make it work you need brackets [], used like this:

If temperature < 23.5
[
 If switch.Asserted
 heater. On
]
Else
 heater. Off

72If

Copyright © 2009-2021 Venom Control Systems Ltd

Optional 'Then'

There is an optional keyword, Then, that may be used to clarify complicated If constructions. It
goes between the If's condition expression and the If's statement, for example:

If a AndAlso b OrElse c IsFalse Then complicated_statement

See also Select Case

Don't use And in your condition expressions unless you actually intend to perform a
bitwise combination of two bit patterns: use AndAlso.

Index and Index0

Index Int
Index0 Int

Index and Index0 count the number of times round the current Forever, Every, Do, While or
Repeat loop. Index counts from 1, and Index0 counts from 0.

Only the Index of the most recently entered loop is available, so if you have nested loops and
need the outer Index, you need to store it in a variable. The following example demonstrates
this, and prints a times-table:

To times_table_up_to(max)
 Local outer_index
 Repeat max
 [
 outer_index := Index
 Repeat max
 [
 Print outer_index:1," times ",Index:1," is ",outer_index*Index:1,CR
]
]
End
-->times_table_up_to(10)
1 times 1 is 1
1 times 2 is 2
1 times 3 is 3
...
2 times 1 is 2
2 times 2 is 4
...
10 times 9 is 90
10 times 10 is 100

73 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Index counts up to the maximum integer, $7FFFFFFF. It then wraps round to the minimum
integer, $80000000, and continues back up through zero again. For a loop being executed
50 times a second, the wrap-round will occur after just under a year.

Hence if you use Index in extremely long-term loops, you should ensure that you allow for
the case where it becomes extremely large. Using And to create a lower-range Index which
repeats itself is one way of doing this.

Int

<Float expression> As Int Int

Int is used as part of the As Int operator to convert the given value to an integer. See As for
more information.

See also As

It is also used as a type specifier in the Class construct and for Buffers and Files.

Inv

Inv <Int expression> Int

The Inv operator gives the bitwise complement of its operand: each bit in the operand is
‘flipped’ to give the result.

Inv is most often used to invert the state of the bits in a number when manipulating bit patterns.

result := Inv inputbits And %10001

Because of the two's complement integer number system used by Venom, the following equation
is always true:

 Inv x = - (x + 1)

 To to a logical inversion of a true or false value use IsFalse, not Inv.

Is

<Any expression> Is <Class name> Int

The Is operator tests an object's type, including any inheritance. Is returns True if the

74Is

Copyright © 2009-2021 Venom Control Systems Ltd

expression evaluates to an instance of a given Venom internal class, or a given user Class that
either is or inherits the named Class.

For any other value of the expression Is will return False.

Example

If obj Is MyClass
[
 obj.message
]

If obj Is Digital
[
 obj.Off
]

IsFalse

 <Int expression> IsFalse Int

The IsFalse operator returns True for a zero (False) operand, and returns zero (False) for a non-
zero operand.

It is most often used to construct conditions for If, While, etc:

If input_switch.Asserted AndAlso interlock.Asserted IsFalse
[
 ...
]

The two statements below are equivalent:

condition := x IsFalse
condition := (x = False)

IsFalse is a postfix operator - that is it comes after the operand.

 See operator precedence for the order in which operators are evaluated.

 To do a bitwise inversion of a bit pattern value use Inv

75 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Left

This special print keyword left-justifies text in GraphicsLCD.

 Right, Centre.

List

List <name>
List All
List Word
List Task
List Define
List Class

The list command prints a list to the terminal.

List <procedure name> - lists a summary of a particular procedure

List <class name> - lists a summary of a particular Class

List All - list summaries of all global procedures

List Word - list all global symbols

List Task - lists all the active tasks

List Define - lists all macros

List Class - lists all defined classes in an inheritance tree

An exception is List startup, which will list the source of Venom2’s default startup
procedure. If you have written your own startup, then its source will not be listed.

See also Word, Task, Define

Local

Local <Local name>, <Local name>, …

Local <Local name> := <Any expression>, …

Local declares one or more local variables for a procedure. These are variables that can only be
used within the procedure, and which are created each time the procedure is called.

Giving procedures their own local variables makes a program more reliable because you can be
sure that another part of the program can't change the value of the variables by mistake.

76Local

Copyright © 2009-2021 Venom Control Systems Ltd

If a procedure is recursive, or more than one task is using it, each instance of the procedure call
has its own copy of the local variables.

All Local definitions must appear before any other statements in the procedure. They may be
separated with commas, or with the keyword Local.

Local variables may be initialised with := when they are defined. You can use any expression,
including previously defined local values. Un-initialised local variables currently default to the
value integer zero.

To proc
 Local val := 1.0 , val2 := 1.1
 Local loc_obj := New Digital(128)
 Local val2 ; not initialised

End

Local names take precedence

Local variables will 'override' any global variables or Class members with the same name. That
is, it is the local variable that is referred to by default when that name is used.

If you want to use the global or the member names then use Global or This to resolve the name
conflict.

Autodestruction

If you are using local variables to hold temporary objects then you can use the AutoDestruct
keyword to indicate that the objects should be automatically destroyed when the procedure
ends.

The maximum total number of locals and parameters a procedure can have is 253.

Having local variables makes the procedure marginally slower to call, but they are marginally
faster to access than global variables.

Log

Log <Float expresssion>

The Log function returns the natural logarithm (Loge) of an expression.

See also Exp, Power of ^

77 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Make <global name> <Object Class> (<parameter list>)

The Make command is used to create an object of the given type, and put it in a global variable.

The parameters to make each type of object are given in the Creation section for each object.

As an example, the following statement creates a Digital object called motor_power, on digital
channel 128:

Make motor_power Digital(128)

By convention, Make is used to create permanent objects. I.e. the application never needs to
kill them with Die. Where possible it’s a good idea to put all your Make statements in the init
procedure, which is normally called by startup shortly after power-on.

On the other hand, temporary objects (which may be created and deleted while the application
runs) are, by convention, created with the New function.

Make or New?

There is not much difference between Make and New. The choice of Make or New can
indicate the way the object is to be used. As an aid to thinking about how an object is to be
used, Make will not work with Local variables or Class members.

 New

Mod

<Int expression> Mod <Int expression> Int

The Mod operator divides the first operand by the second, and gives the value of the remainder.
Mod can only work with integers.

Mod is often used to make numbers 'wrap round'.

If either operand is negative the sign of the result is implementation-dependant, but the
following expression will always be true for all integer values of a and b.

a = a Mod b + a Div b * b

The following example shows a simple pseudo-random number generator that uses Mod to stop
the calculated number becoming too large and causing an integer overflow. The result of the
random number generator is then used to calculate a dice throw from 1 to 6.

;sets the seed from the clock
;the Mod prevents overflow later
To set_random_number_seed

78Mod

Copyright © 2009-2021 Venom Control Systems Ltd

 seed := clock . Time Mod 259200
End

;Calculate next seed value with algorithm and constants
; taken from Numerical Recipes in C (Press et. al.) Ch. 7
;Randomness subject to warnings contained therein!
To large_random_number
 seed := (seed * 7141 + 54773) Mod 259200
 Return seed
End

;Give a number from 1 to 6. We don’t use Mod here
; because the bottom bits of the number are not random.
To dice_throw
 Return (6 * large_random_number) Div 259200 + 1
End
-->set_random_number_seed
-->Every 500 Print dice_throw
 3 6 4 2 5 3 5 2 4 1 1 2 2
 1 5 3 4 5 5 3 6 2 1 6 2 2
 1 4 4 3 5 5 3 4 2 4 3 5 5 ...

See operator precedence for which operators are evaluated first.

If you want to Mod with a power of two, using And is faster:

x Mod 2N = x And (2N - 1)

eg. for x Mod 16 use x And 15.

New

New <Object Class> (<param list>) Any

The New function is used to create an object of the given type and parameters. The parameters
taken by individual object types are given under Creation for each object type in the Object
Types section.

As an example, the following function creates a temporary DateTime object, which is then set
to the current time. The object will be automatically removed when the procedure exits:

To now
 AutoDestruct
 Local dt := New DateTime(clock.Time)

End

New is generally used when creating temporary objects held in local variables, rather than setting

79 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

up permanent objects at the beginning of an application (where, by convention, Make is used).
Make has been disabled from assigning to local variables as an aid to indicating the use of each
object.

Garbage collection

If you don’t remove temporary objects after you have used them they will accumulate in
memory, eventually using it all up, and so crash your application. To prevent this you can use
the AutoDestruct mechanism to remove them automatically when a procedure ends.

If you don’t use AutoDestruct then you have to keep track of temporary objects
explicitly, sending them the Die message at each point your procedure might exit.

Returning an object created with New

You should not use AutoDestruct for situations where a procedure returns an object it has
created, for example:

;Returns a DateTime intialised to the current time.
To return_a_datetime
 Local dt := New DateTime(clock.Time)
 Return dt
End

Nil

Nil Nil

Nil is a special object that is used as a placeholder for any other type of object, or to represent
‘no object’.

Nil will accept any message, and will return False to all of them.

It is useful for situations where, in the normal course of events, an object is used but sometimes
you wish to allow for situations where ‘no object’ needs to be represented.

The most common example of this is substituting the value Nil for an output stream object
when you want Print output to be discarded:

lcd := Nil ;all Print To lcd will now be discarded.

Testing for Nil is done with = and <>, for exmample:

If lcd = Nil
[

]

80Nop

Copyright © 2009-2021 Venom Control Systems Ltd

Nop

NOP

The NOP statement introduces a no-operation bytecode into the compiled Venom code. NOP
doesn't do anything except taken some space in the code and take a short amount of time to
execute.

Runtime error reports - improving line number accuracy

NOP is most often used to improve the line-number accuracy in runtime error reports (because it
introduces more embedded source-line numbers into the code)

E.g. if you were getting a runtime error somewhere in this block of code:

Make a AlphaLCD(20,2)
Make eeprom SafeData(2,1,162)
Make d digital(128)

you might do this - the runtime error would be narrowed down to just one of the Make
statements.

NOP
Make a AlphaLCD(20,2)
NOP
Make eeprom SafeData(2,1,162)
NOP
Make d Digital(128)
NOP

Or

<Int expression> Or <Int expression> Int

The Or operator returns the bit-wise Or of its two operands.

A bit is set in the result if either of the corresponding bits in the operands are set. Or is often
used to set one or more bits while leaving the rest alone. For example:

Print ~~%101010 Or %001100
101110

Internally, what happened was this:

Or
00000000 00000000 00101010
00000000 00000000 00001100

81 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

00000000 00000000 00101110

See operator precedence for which operators are evaluated first.

See also Or, Eor, Inv, True, False

Or is a numeric operator - if you really want a logical operator use OrElse.

OrElse

<Int expression> OrElse <Int expression> Int

The OrElse operator is used to determine if at least one of two expressions are non-zero.

If either of its operands are non-zero then it returns a non-zero value.

If both of its operands are zero (False) then it returns zero (False).

The OrElse operator is also 'lazy' or 'short circuiting': if the first operand is non-zero then it
doesn't go on to evaluate the second operand, thus enabling efficient evaluation, and other
benefits.

It is guaranteed to evaluate its left hand expression before its right hand expression.

OrElse is often used in the expression of an If or While construct to make a more complex
condition, e.g.

If temp > 50.0 OrElse testing_fan
 fan . On

See operator precedence for which operators are evaluated first.

 AndAlso

ParamCount

ParamCount Int

ParamCount is an integer value giving the actual number of parameters supplied to a
procedure that has optional parameters.

It may be used with Select Case, etc, to determine how a procedure should respond,
given the number of parameters supplied.

82ParamCount

Copyright © 2009-2021 Venom Control Systems Ltd

Note: Those parameters that were not supplied in the call will be set to the value integer zero.

Example

To proc(a,[b,c])
 Select Case ParamCount
 Case 1 ; Only one parameter supplied.
 [
]
 Case 2 ; Only two parameters supplied.
 [
]
 Case 3 ; All three parameters supplied.
 [
]
End

 Parameter(n); Select Case

Parameter

Parameter(Int n) Any

Parameter(n) is a Venom function that returns the value of the Nth parameter passed to a
procedure or method. It is most often used when there are optional parameters.

The first parameter is Parameter(1) the last is Parameter(ParamCount). If you
try to access parameters that don't exist then a Range Error is thrown.

Example

To procedure(a,b,c)
 Repeat ParamCount
 [
 Print Parameter(Index),CR
]
End
...
procedure(3,"two",1)
 3
two
 1
-->

83 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 ParamCount

Print

Print <print item> , …
Print To <Object> , <print item> , …

The Print command is used to send text to an output stream or text-handling object. You can
also use the PrintF message to send text to an object.

By default print output is sent to Serial Port 1 (the default output device). During development
this is usually connected to your terminal.

For example:

-->Print "Hello world"
Hello world

The Print keyword is followed by a list of print items separated by commas. These may be string
constants, numbers, objects, expressions, or special print keywords, such as CR (Carriage
Return) in this example.

-->Print "Hello world ", clock, " ", 2 * 3, CR
Hello world 2011-02-14 11:37:19 6
-->

Print formatting

Each type of value will print in a default way - e.g. integers will print in a default field width of 1
digit. You can force different formatting of almost any kind of value type using the colon
formatting operator. E.g. here we print an integer in a field width of 10 digits:

Print 1234 : 10
 1234

Printing objects

Each object responds to being printed in its own way. Objects also respond to colon formatting
operators.

-->Print clock , " ",clock : 4
2011-02-14 11:37:19 11:37:19 am-->

See here for how the clock object responds to colon printing formatters.

84Print

Copyright © 2009-2021 Venom Control Systems Ltd

Special print keywords

Print has a set of keywords for special actions. Not all of these are understood by every output
device.

Print keyword Action

CLS Clear Screen

Home Go to the Home position

CR Carriage Return (new line)

HTAB Tabulate horizontally

VTAB Tabulate vertically

GOTOXY Go to a position

FONT Set the font style

Left Justify to the left

Right Justify to the right

Centre Justify to the middle

.

Print redirection

When Print is followed by To, the output can be sent to any object, for example:

Print To file, "Data readings", CR, data_array

You can also redirect print output by changing the default output stream object.

Print will lock the output device for the duration of the Print command, and then unlock it
afterwards. There is no further locking for 'nested' printing, where a procedure (or more
likely, a method) that includes Print statements has been called from Print.

The colon format operator : allows you to re-format print output

The PrintF message is accepted by any object that can accept print

The OperatingSystem.Output message changes the default output streams.

85 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Program

Program "<filename>" Int line_number Int checksum Int
flags
... procedures ...
Program End

Old syntax for this command is still supported and is listed here.

The Program command is used when downloading Venom2 source code files to the
controller. Program is usually generated by the VenomIDE development toolset so you are
not likely to need to use it directly.

When downloading program source text within the Program/Program End construct,
echoed characters and prompts are turned off – instead a summary of each procedure is printed.
 Errors are reported as they occur, and are summed up at the end. Program will stop any
background tasks.

Pressing CTRL-C will escape from Program.

Parameters

The name of the file being downloaded should be supplied as a string constant.

The optional line_number parameter gives the line within the file of the Program statement. If
line number is not present the value used internally defaults to 1 to allow the Program command
to be used explicitly within a text file (when you are not using VenomIDE).

The optional checksum parameter gives the checksum of all the characters sent between the
Program ... and Program End statements. This is later used by Venom to check the integrity of
the code that has been downloaded. If the checksum matches with the sum of the actual
characters sent then 'Checksum OK' is reported at the end of the download. This parameter
only likely to be used by VenomIDE.

The optional flags parameter is for fine tuning of the download process. The flags are sent as
binary bits set in an integer value. The bit values are:

Bit number Function Description

0 Don't Echo Procedure
Names

Don't report each procedure name as it is
downloaded

1 Remove all procedures that
were in this file before
defining new ones

Helps to keep the program in VM2 RAM tidy
by removing redundant code.

2 No Download report if OK Don't report the end of download, or
validation, etc, if it all went OK

86Program

Copyright © 2009-2021 Venom Control Systems Ltd

3 Last file in batch This is the last file in a multi-file download - a
signal to analyse the code, etc.

4 Show Code analysis Show an analysis of the code after the
download

5 Show warnings Switch on warnings in the code analysis

6 & 7 Handshake to use Sets the serial handshake method to use during
the download process. This is the same as the
value used by SerialPort.Handshake
.

Program: Old syntax

Program Start
Program End

This is the old syntax for Program. You might need to use it if you don't have access to
VenomIDE, but need to download code using a simple terminal emulator. Put these commands
at the beginning and end of each Venom code file to suppress echoing back of the code as it is
downloaded.

Private

Private <membername> <datatype>

Private To <methodname>

Private specifies that a member or method in a class should only be visible from inside the
class where it is defined.

See also Public and Protected.

87 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Protected

Protected <membername> <datatype>

Protected To <methodname>

Protected specifies that a member or method in a class should only be visible from inside
the class where it is defined, and derived classes.

See also Public and Private

Public

Public <membername> <datatype>

Public To <methodname>

Public specifies that a member or method in a class should be visible from anywhere - inside
and outside - the class. Public is the default accessibility setting for all members and methods, so
it is not strictly necessary to use it.

See also Private and Protected.

Repeat

Repeat <Int count> <statement>

Repeat executes a statement a pre-determined number of times.

The count expression is evaluated only once, at the start of the loop.

If the count is less than 1, the statement is not executed at all.

The system variables Index and Index0 count the loop iterations.

The following example shows Repeat being used to print a line of stars of a given length:

To stars(n)
 Repeat n
 [
 Print "*"
]
End

-->stars(10)

88Repeat

Copyright © 2009-2021 Venom Control Systems Ltd

**********-->

The maximum value of count is $7FFFFFFF, the maximum positive integer.

See also Break

Return

Return <Any>

The Return statement is used to return a value from a procedure. The procedure is exited
immediately.

In the following example, Return is used to make a function that cubes its parameter:

To cube(x)
 Return x*x*x
End
-->Print cube(4),CR
 64
-->Print cube(4.6415888)
 100.0

Return can also be used to leave a procedure early, even if the procedure doesn’t normally
return a result. You can just use a dummy return value, like integer zero.

To proc
 If leave_early
 Return 0
 carry_on_processing
End

 The value returned may be of any type - including any numerical value or object type.

To, End
Beware of returning pointers to local variables. See @ for more details on this.

Right

This special print keyword right-justifies text in objects like the GraphicsLCD.

 Left, Centre.

89 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

Select

Select Case <Int>
 Case <Int Const> , ...
 <statement>
 ...
 Case Else
 <statement>

The Select Case construct allows the choice of one of many actions based on the value of an
integer expression.

Each case in the construct is labelled with one or more integer constant values, and has one
statement to execute. If the value of the expression matches one of the case values then the
statement is executed. If it matches none of the cases, then the Else case statement is executed.
The Else case is optional and may appear anywhere in the list of cases.

To test_select(n)
 Select Case n
 Case 1,2
 [
 Print "it was 1 or 2"
]
 Case 3
 [
 Print "it was 3"
]
 Case 200
 [
 Print "it was 200"
]
 Case Else
 [
 Print "it was none of them!"
]
End

There is no check for duplication of the case values; matches are tested from the top down.

Note: You may nest Select constructs, but watch out: the case statements may get associated
with the wrong Select statement unless you use square brackets [], just as in If/Else.

The first cases are the fastest to check, but it’s only ~3.5 S per case (measured on the
VM2 with a 72MHz clock). The Else case is always reached after checking every other
case, no matter where it appears in the list of cases.

90Select

Copyright © 2009-2021 Venom Control Systems Ltd

Currently the case constants must be expressions that evaluate to a constant in the range -
32768 to 32767, and the number of cases must be less than 65535.

Sin

Sin <Float> Float

The Sin operator returns the sine of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Cos Tan Acos Asin Atan

Sqrt

Sqrt <Float> Float

The Sqrt function returns the square root of an expression.

Start

Start <statement> Task

The Start command starts a new task. The statement is set running as an independent task, in
parallel with existing tasks.

Start returns a result immediately. The result is a Task object, which may be used to control the
task, or request information about it.

Keep tasks simple

It is good practice to write applications where Start's statement is simply a procedure call, rather
than a more complicated block of statements:

Start monitor_procedure

Listing tasks

You can use List Task to get a list of all the tasks currently running.

If you don't have a command line because code is running, then you can hit CTRL-T to get the
same effect (so long as Serial.Escape is not disabled).

Currently a task will take four blocks of memory. One is for the copy of the task’s code.
One is for the task object (~100 Bytes) and two are for the task’s Venom stack (1600
bytes) and processor stack (1000 bytes).

There is no limit other than memory to the number of tasks you may use. However, if your

91 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

application needs to use more than four or so, you should consider re-writing it.

Each task is given slots of around 1mS (2mS max), in a round-robin cycle. Hence the more
tasks there are, the less often any one of them gets a slot. If the task is waiting for
something, such as in Await, reading a character or locking an object, it will swap out to the
next task as soon as it realises it has to wait, and will not take the full slot time. Any task that
is waiting on a timing event or an interrupt will cause the processor to sleep to save power if
possible.

See also Stop

Referring to Local variables in Start

Even though a new task runs in a completely different context (a different stack) to the context
of Start, it is still possible to refer to local variables from the old context in the new task.

This is made possible because Start first copies local variables into the new context before
actually starting the new task.

This means that the new task can only refer to copies of the local variables, taken at the point
Start is executed, not their on-going values.

Note that the parameters to a procedure, and the object (This) in a method call, are also part
of the local context and so may be referred to in Start.

Currently the Index and Index0 of a loop containing Start can't be used this way.

Example:

To main
 Local ind
 Repeat 4
 [
 ind := Index0
 Start thread(ind)
]
End

Stop

Stop <Task expression>
Stop <Int expression>
Stop All

The Stop command is used to stop another task. The Task object or the task's ID number may
be used to identify which task to stop.

The task ID number is a unique 32-bit number assigned to each task when it is created. List
Task will list all the tasks together with their task ID numbers.

The command line task (Task ID 0) cannot be stopped.

92Stop

Copyright © 2009-2021 Venom Control Systems Ltd

Stop All will stop all tasks except the command line task. If you type CTRL-C at an empty
command line, then Stop All will be applied to any tasks running.

Note that in rare circumstances (e.g. if the USB connection to the Flash File System is
currently writing to the Flash memory) then the task that handles this writing, which is
automatically started and stopped by the operating system, will not be stopped by Stop
All. It will stop when it has finished writing to the Flash memory.

See also Start, List Task

Stopping tasks 'cleanly'

When a task is stopped with Stop or Stop All, it is sent a special runtime error. This runtime
error is just like any other except that it will not generate any error text, nor will it cause the
controller to reset.

This error may be trapped using Try / Catch, which is useful if you want to make your tasks
clean up after themselves when they are asked to stop.

There are two kinds of clean up that you might want to do:

1. Unlocking any global objects used by the task. This can be handled using Lock(0)-
see the restored locking scheme.

2. Removing 'local' objects created by the task. This can be handled using AutoDestruct.

For example:

To a_tidy_task
 Local error_number
 AutoDestruct
 Local buff := New Buffer(Char)

 Try
 [
 Every 1000
 do_something_with(buff)
]
 Catch error_number
 [
 If error_number <> Task_DEATH_ERROR
 Exit error_number ; Handle other errors 'further up'.
]

 ; Tidy up when this task ends:
 make_outputs_safe
 ; Ensure these are unlocked if there is

93 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 ; any chance they were left locked by this task.
 global_object_a.Lock(0)
 global_object_b.Lock(0)
 global_object_c.Lock(0)
End

Notes

If your task clean-up code doesn't unlock all the resources locked by a dead task then any task
that attempts to lock a locked resource may wait for a little while before the system detects that
the lock may be released to a new owner. You can optionally elect to have the system issue a
runtime error in this situation: Attempt to lock object held by dead task. See here for how to
turn on this runtime error.

If the tasks stopped by Stop or Stop All take time to 'clean up' then they may not have stopped
by the time the Stop command has completed. If this is a problem for you then you can detect
this with Debug(8), or by sending the Done message to the task object.

You can prevent all other tasks from running using Debug(20).

Swap

Swap

Swap will cause an immediate task swap. If there are no other tasks ready to run then Swap
will allow the processor core to sleep: some processors have a SLEEP instruction that puts the
processor core into a low power state. Interrupts are handled normally by waking the core.

Swap is not often needed as using a language construct that waits (which implies task swapping)
is often a better solution.

Constructs such as Wait, Await, Every, and many messages to objects, such as Keypad.Get will
swap tasks if they cannot return immediately.

See also Wait, Await, Every

Tan

Tan <Float expression> Float

The Tan operator returns the tangent of an angle in radians.

See operator precedence for which operators are evaluated first.

See also Cos Sin Acos Asin Atan

94Task

Copyright © 2009-2021 Venom Control Systems Ltd

Task

The keyword Task may be used to specify the current task, or to specify listing all tasks.

The current task

Task <Task object>

For example:

Task.State := New TaskState
Print Task.State.Value, CR

Listing tasks

List Task

List Task lists out all the tasks currently running, giving some idea of where in the task the current
execution point is.

Task 0:
in proc_a (myfile.vnm line 20)
in main (myfile.vnm line 40)
in startup (myfile.vnm line 139)
in the command line.

Task 1:
in proc_b (myfile.vnm line 200)
in a task started from main (myfile.vnm line 41).

Task 2:
in serial.Get
in proc_c (myfile.vnm lines 1-2)
in a task started from main (myfile.vnm line 42).

You can also type CTRL-T to show all the tasks even when the command line task is busy.
CTRL-T is enabled and disabled using serial.Escape, along with the CTRL-C Break function.

As always, you can double click on a file/line number in VenomIDE's Terminal to go to the
execution point in your Venom source code.

Task Blocking

The task list will also show if one task is 'blocked' by another - because of contention over a
locked resource. In this case, the listing may look like this:

Task 0:

95 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

in proc_a (myfile.vnm line 20)
in main (myfile.vnm line 40)
in startup (myfile.vnm line 139)
in the command line.

Task 1:
Blocked by Task 0
in proc_b (myfile.vnm line 200)
in a task started from main (myfile.vnm line 41).

If you see two or more tasks each blocked by another in a circular fashion, then you have a
deadlock situation. See the Tutorial for more information.

See also List, Start

TextBlock

TextBlock <name> :
<lines of text>
<lines of text>
TextBlock End

TextBlock allows you to define large blocks of text in your code files. The blocks of text are
treated exactly like large string constants.

Text blocks are always defined outside of any other context - that is, they can't be defined inside
a procedure or Class definition.

One of the features of TextBlock is that the text you embed is completely literal - you don't need
to escape out any characters at all: quotation marks, backslash characters, indentation and line
endings are put into the string constant exactly as they appear in your source file. This can very
useful for embedding HTML, or other languages, in your Venom source files. It's also worth
noting that you can use a TextBlock as the format string of PrintF() and any '%' characters
in it will be interpreted in the usual way at run time by Printf(), providing a simple means to
embed variable values into an HTML page.

TextBlock str:
 This is some text
 It can occupy many lines and be indented in any way
 and can include any number of ""quotes", \backslashes\\, etc.
TextBlock End ; the end of the text.

The block of text is introduced with the keyword TextBlock, and followed by the (global)

96TextBlock

Copyright © 2009-2021 Venom Control Systems Ltd

name you want give the text. This text block introduction must end with a colon symbol.

Then follows the actual text - any characters you like, and any format.

Termination

The text is ended with the 'termination string' TextBlock End (This is case insensitive - e.g.
you can also use textblock end)

There are some other rules about this termination string:

It must be at the start of the line it occurs on

It must be followed by some kind of white space, before any other text on the line (you
can put any text after the white space, but it will be ignored by the compiler)

Other termination

In case the text TextBlock End can't be used to uniquely indicate the end of the text you
can specify any other termination string (inside quotes).

Note that when you supply an explicit termination string it is case sensitive.

For example:

TextBlock str "+++":
blah blah blah
blah blah blah
TextBlock End ; This is part of the text block
blah blah blah
blah blah blah
+++ ; This is the termination string

In order to visually delimit your code you might still want to put TextBlock End at the end
of your text blocks. The compiler will just ignore it. For example you can do this:

TextBlock str "+++":
blah blah blah
blah blah blah
TextBlock End ; This is part of the text block
blah blah blah
blah blah blah
+++ ; This is the actual termination string
TextBlock End ; This is ignored by the compiler

VenomIDE Style tidier

Earlier versions of the style tidier don't recognise the TextBlock construct and will try to tidy up
the text inside the block. Later versions stop tidying at the first TextBlock command.

97 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 Embedded text, String concatenation.

Then

If <Int condition> Then
 <statement>
Else
 <statement>

Then is used as part of the If construct to separate the condition and the If's statement.

Then is optional, and in fact is rarely used. It is sometimes useful for improving code clarity.

This

This.<membername>
This Any

This has two related uses or meanings.

Firstly, This forces the compiler to access a member/method name, overriding any local
variable of the same name, when executing a method in a Class.

Secondly, This holds the value of the current object, which is the current instance of a Class.
Note that it may be an instance of a class derived from the current class.

Example

Class Person : BaseClass
 Age Int
 Name String

 To SetAndCheckAge(age)
 If age < 200
 This.Age := age ; Override local name (1st use)
 End

 To Process
 MyBuffer.Put(This) ; Put this object in a buffer (2nd use)
 End

98This

Copyright © 2009-2021 Venom Control Systems Ltd

End

 See also Base, Derived.

To

The keyword To is used to define procedures and also to redirect print output.

Procedures

To <global name> (<parameter name> ,)
 <Local list>
 <statement>
 …
End

<Local list> is as list of the following:

Local <local name> := <expression> , …

A procedure is a named sequence of Venom statements.

Procedures may declare local variables. Locals must be declared before any executable
statement. Locals may be initialised to any value using :=.

Procedures may take parameters. The names of any parameters are specified in parentheses
after the procedure name. Parameters behave just like local variables, but they are initialised by
the code that calls the procedure. Parameters may be declared as optional using square
brackets.

Local variables and parameters will override any global variable with the same name - i.e. the
global with the same name is invisible inside the procedure.

The Return statement can be used within the procedure to make it return a result.

The following example shows a procedure that gives the x to-the-power y (y positive) and
shows how it is called:

To power(x, y)
 Local result := 1
 Repeat y
 result:=result*x
 Return result
End
-->Print power(10,3) ,CR
 1000
-->Print power(2,16) ,CR
 65536

99 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

There are many other examples of procedures throughout this document.

Print redirection

See here for print redirection

The maximum number of parameters and local variables combined is 253.

Print redirection

True

True Int

True is a convenient constant exactly equivalent to integer 1.

Note that If, While, Await etc all treat any non-zero value as ‘true’.

See also And, Or, Eor, Inv, False

Try

Try
 <statement1>
Catch <variable name>
 <statement2>

The Try/Catch construct is used to handle errors and exceptions in your program.

Try will try running the code in statement1. If there are no errors or exceptions then code
execution will resume after statement2.

If there is a runtime error (or Exit) during execution of statement1, or in any code called by
statement1, control will immediately jump to statement2, which is intended to handle the error.

The error will not be handled by the operating system, no error will be reported, and
ErrorAction will not restart the controller.

You must specify a variable name after Catch - this variable will be set to the runtime error
code or Exit value that occurred. The variable that holds the error number can be either a
Global or a Local. If no error occurs then the variable is not set.

#Define Div_ZERO_ERR 6

To try_divide(a,b)
 Local r := 0

100Try

Copyright © 2009-2021 Venom Control Systems Ltd

 Local error_code ; variable to hold the error code
 Try
 [
 r := a Div b ; try the division.
]
 Catch error_code
 [
 Select Case error_code
 Case Div_ZERO_ERR
 [
 Print "caught div by 0",CR
]
 Case Else
 Exit error_code ; pass on other errors.
]
 Return r
End

Nesting

You can nest Try/Catch constructions to any depth. Exceptions will be handled first by the
lowest level Catch. You can pass on any error or exception that you can't handle to the next
level up using an Exit command in the Catch block.

Error value isn't always used

If you don't need to use the value of the variable then use a 'dummy' variable name, e.g. dummy:

 Try
 [
 some_code
]
 Catch dummy
 [
 error_handling
]

Catch is optional

The entire Catch part of the Try contruction is optional. If you don't use it then errors and
exceptions will simply jump out of the Try block.

To try_divide(a,b)
 Local r := 0
 Try
 [
 r := a Div b ; try the division.

101 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

]
 Return r
End

User-generated exceptions

Try doesn't just handle normal runtime errors - it also handles exceptions that you might choose
to generate in your low level code in order to 'get back' to some higher level code that can more
easily handle the exception.

You can use Exit to generate your own exceptions. Exit essentially generates a runtime error with
an error code you can specify, in the range 1 - 255.

If you use Exit 0, then Catch won't catch the exception. This can be used to jump out of
nested loops.

If you use a value within the range of standard Venom2 runtime errors then it appears as if that
error happened. For that reason it's usually best for you to choose a range of error/exception
codes well outside thus range for your own use - we recommend 100 - 255.

 Exit, Appendix E: Error messages

TypeOf

TypeOf <expression> Int

The TypeOf operator returns an integer representing the type of the result of the expression, i.e.
whether the expression is an integer, floating point number, string, pointer, object, defined Class
etc. In general you don’t need to know what these values are – you can just compare them as
below:

To procedure (parameter)
 If TypeOf parameter = TypeOf 0 ; is it an integer parameter?
 [
 ;process the integer
]
End

Object types

As expected, the type numbers returned for objects are different for each object type.
However, you may be surprised to find that two objects that may appear to be of the same type
will actually have different type numbers. Examples of this are Digital channels on the I2C Bus
compared to Digital channels on the controller’s on-board I/O ports.

If you want to test whether an expression is an object, then you can use TypeOf Nil. The Nil
object will always have a type value smaller than any object’s type, but larger than any other

102TypeOf

Copyright © 2009-2021 Venom Control Systems Ltd

type.

If TypeOf thing >= TypeOf Nil ; is it an object of some kind?
[
]

Class types

When you define a new class with Class, each class defined has its own unique type number.
You can use this like this:

Class my_class
 ...
End
...
my_object := New my_class
...
If TypeOf my_object = TypeOf my_class
 ...

 Also see the Is operator.

Constant folding

When it can, the compiler will optimise TypeOf expressions into a simple integer. Currently this
applies to

TypeOf <integer constant>
TypeOf <float constant>
TypeOf <string constant>
TypeOf Nil

Thus, TypeOf <constant> may be used as the Case of a Select Case construct:

To procedure (parameter)
 Select Case TypeOf parameter
 Case TypeOf 1 ; Deal with integers
 [
]
 Case TypeOf 1.0 ; Deal with floats
 [
]
 Case TypeOf “” ; Deal with strings
 [
]
 Case Else ; Deal with other types…
 [
]
End

Other types

103 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

There is a non-object type that is visible to the Venom2 user but hasn't been mentioned: the
Pointer type, created using @variable_name.

There are also types that are not visible to the Venom2 user, as they get trapped or converted
before TypeOf can get hold of them (e.g. procedures, undefined variables), or because they will
never be put in a venom variable.

See also As

Unsigned

Unsigned

The type specifier Unsigned is used to indicate an unsigned integer data type. Currently it
may only be used in specifying the data type of 16-bit Arrays.

For example:

Array data (Unsigned Int 16)
 1, 2, 3, 4
End

Or

a := New Array(Unsigned Int 16, 10, 0)

Wait

Wait <Int expression>

The Wait command is used to wait for a given number of milliseconds. This is used to build in
delays between actions. For example, the following piece of code runs a motor for one second:

To one_second_run
 motor.On
 Wait 1000
 motor.Off
End

If you need to make something execute something at regular intervals, use Every.

Timing over long periods can be done with Stopwatch, Timer and RealTimeClock objects.

The minimum time usefully used by Wait is 0 milliseconds. The maximum time is
$7FFFFFFF milliseconds, or about 25 days.

While waiting for the time to elapse, the task manager will process other tasks. If there are

104Wait

Copyright © 2009-2021 Venom Control Systems Ltd

no tasks that can proceed the task manager will send the processor to sleep to save power.
Wait has a resolution of 1mS. Wait 1 will wait for between 1 and 2 mS.

Word

List Word

List Word gives a list of all the global names seen by Venom, under headings giving what they
are being used for. The following example shows the user names just after memory has been
cleared:

Procedures:
startup init main
Integers:

Floats:

Strings:

Pointers:

Objects (inc. 'Nil'):
system serial net led clock s
Undefined:

The last category, unused, contains names which have been deleted, or which have been seen by
Venom2 but never assigned a value. Unprintable words typed in moments of frustration also
turn up here, so beware! Clearing the memory will get rid of these.

See also List

While

While <Int expression> <statement>

The While construct executes the statement while the value of the condition expression remains
non-zero. If the condition is zero to start with, the statement is never executed. For a loop that
executes at least once, see Do.

In this example, the condition is index0 < 10 and the statement is Print index0.

-->While index0 < 10 Print index0
 0 1 2 3 4 5 6 7 8 9-->

Normally when you use While you would indent the code in the statement, and the statement
might well be a block delimited by [].

While x <> 15
[

105 Language Keywords

Copyright © 2009-2021 Venom Control Systems Ltd

 process(x)
 deal_with(x)
]

Within the loop, Index0 and Index count from 0 and 1 respectively, incrementing each time
round the loop.

See also Do, Break

Beware that all non-zero values are taken by the While construct as meaning True, but that
it is possible for And to return False even when both its operands taken separately would
be treated as True.

PrintF

PrintF(String format, ...)

PrintF is similar to C's printf() function. It can be more useful than Print in some situations -
particularly when you need to embed variables within other text.

PrintF used by itself looks like a command, but actually the PrintF message is being
implicitly sent to the OperatingSytem object - see here for more details.

Example

-->PrintF("Hello %i world\n", 5)
Hello 5 world
-->

Object Types

107 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Object Types
Most of the work in a typical Venom application is done by Objects. Objects come in many
different types. Different types of object respond to different messages to perform many
different functions.

How to use the Object Types section

This section of the manual contains detailed information on every object type currently in
Venom2 for the VM2. It does not contain any hardware information; for this you should see the
datasheet for your controller.

If you are new to Venom2 you are advised to familiarise yourself using the Venom2 Tutorial -
this help file is designed for quick reference to enable you to find the exact syntax or function of a
particular object type or message.

Each object type section has a header that gives a short description of the type and a summary
of the messages available. Some object types have sub-objects - e.g. Serial.
InputBuffer.

After the header for each object type the messages are given in alphabetical order. The
exceptions are Creation, which is always shown first - giving information on creating the object –
and standard ‘system’ messages such as Printing, Accepting Print, and Die, which are put at the
end.

Some messages do very similar things in many objects, or are always accepted because they are
used internally by the system and must never give an error. These are only documented
separately if they do something out of the ordinary. These ‘generic’ messages are, Lock,
Unlock, TestLock, Owner, and Die. They are documented in general in the next section.

Each message has a syntax description, details of what the message does and sometimes some
code examples. Following this there may be some paragraphs with icons indicating other
information relevant to the object:

Denotes information on any limits to the parameters or results of the message, or the number
objects of this type that can be created.

Denotes information on the hardware needed to use this type or message.

Denotes information on the memory usage of the message, or the memory used when the
object is created.

Denotes information on timing aspects of the message.

Denotes pointers to other parts of the manual for related topics.

Denotes information about if and when the object should be locked.

This warns you to beware of putting bugs in your code

Syntax descriptions
Each message has a syntax description, including the data types of parameters and results. In

108

Copyright © 2009-2021 Venom Control Systems Ltd

order to be precise, some of these are quite complex. To quickly jog your memory it may be
easier to look at one of the code examples. The format of the syntax description definitions is as
follows:

Message (datatype item [, …]) datatype

Text in square brackets [] indicates an optional part of the construction.

bold is used for message names and user-defined names. (Data types are shown in
plain text.)

Text in <angle brackets> indicates a reference to a ‘lower level’ construct:

<name> means any Venom name, and may be qualified by Global or Local

<statement> means any Venom statement

<expression> means any Venom expression, and may be qualified by a data type.

The following in regular text indicate the data type of a value: Int, Float, String, Object,
Pointer, Any. Any means that the data type might be any of the other types.

The symbol means the message returns a result. The type is given in 'light' (not bold)
text: e.g. Int

 indicates that the message may be used to either set or read a value, i.e. it is an
active variable.

Ellipses … indicate optional repetition of the preceding construct.

Locking

There is a set of generic locking messages that are accepted by all objects:

Lock

Unlock

TestLock

Owner

Though every object must accept these messages, some objects may not do much in response.

For a description of how to use locking please see the Venom2 Tutorial.

The following paragraphs describe the messages and their return results and parameters.

Lock

In general, calling lock will lock an object so no other task can use it. There are two basic
locking schemes that may be used with Venom locks, and you can use both together if you want
to.

109 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Obj . Lock Int

Incremental locking scheme

Calling Lock with no parameters will attempt to lock the object for exclusive use by the current
task:

If the object is not locked by any task then the current task claims it, and the lock level is
set to 1.

If the object is already locked by the current task then the lock level is incremented.

If the object is already locked by another task then the current task has to wait until the
object is fully unlocked by the task that holds it.

When Lock returns it will return a value that may be useful later: the original lock level, i.e. the
number of times the object had been locked originally. This is zero if the object had not been
locked at all.

For example:

object.Lock ; Increment lock level
...
object.Unlock ; Decrement lock level

Notes

 The maximum number of times an object may be locked to is 255. Attempting to lock any
further than this will cause a runtime error.

Restored locking scheme

Obj . Lock := Int

You can also Lock an object by assigning a value to the lock. This used in the Restored
Locking scheme described in the Tutorial. Basically, the internal lock level is set to the assigned
value. If the value is zero, then the object is unlocked completely.

For example:

Local prev_lock_level := object.Lock ; Increment lock level and record previous lock level.
;...
object.Lock := prev_lock_level ; Restore previous lock level.#

Notes

If an object is owned by another task then attempting to unlock it, by assigning a lock level of
zero, will be ignored. This can be useful to tidy up in exception handling, when it's not clear if the
current task owns an object or not.

If an object has no lock then assigning a value to Lock will do nothing, and Lock will always

110Locking

Copyright © 2009-2021 Venom Control Systems Ltd

return zero.

Unlock

Obj . Unlock

Unlock will reduce the lock level by 1, assuming the object was ‘owned’ by the current task.

If the lock was not locked, or was owned by another task, then Unlock will result in a runtime
error: Locked/Unlocked too many times.

TestLock

Obj . TestLock Int

TestLock is rather like Lock, except that it won’t wait if it can’t lock an object immediately.
Instead it just returns a zero result to indicate failure.

If it succeeds in locking the object then it returns the resultant lock level. Note: this is one
higher than Lock would have returned, so one should be subtracted when using TestLock
in the restored locking scheme.

If an object has no lock then TestLock will return the value 1 (one) always.

Owner

Obj . Owner TaskObject Or Nil

Owner will return an object that represents the task that owns the locked object, or Nil if the
object is not locked.

If an object has no lock then Owner will return the value Nil always.

PrintF

obj.PrintF(<String> format, [Any ...])

The PrintF message is accepted by any object that the Print To command can be used
on.

PrintF is more useful that Print in many situations - particularly when you need to embed
variables within other text.

111 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If you just use the PrintF message by itself then the print output is sent to the system object,
which then passes it on to the current default output stream.

In operation the PrintF message is very similar to the printf() function in the C language, but
has additions that make it more powerful in Venom2. See here for the differences.

Format string

The first parameter of PrintF is a format string. This should contain the plain text to be
printed and optionally a sequence of value place-holders. These take the form of a % character
and a format type character (see the table below). For each % place-holder, there should be a
corresponding parameter in the PrintF parameter list, of a suitable data type.

(The format string doesn't have to be a string constant - it can be any string you like - even
created by your program at runtime).

Format type specifiers

Format type
character

Data type of parameter Examples

b Binary integer 10011101

c ASCII Character A

d, i Decimal integer 105

e, E Scientific notation (mantissa/exponent) using e or E character 3.9265e+2

f Decimal floating point 392.65

g, G Use the shorter of %e (or %E) or %f 392.65

o An object

s A string (string object or string constant) Hello world

u Print a decimal integer as an unsigned quantity 3432

x, X Unsigned hexadecimal integer - using lower or upper case
for letters

7f, 7F

p A Pointer address in hexadecimal 2000b1c4

I IP (internet protocol) address as integer 192.168.1.2
3

% A % followed by another % character will write % %

For example

112PrintF

Copyright © 2009-2021 Venom Control Systems Ltd

-->PrintF("Here is an integer %i", 13)
Here is an integer 13-->

Strings vs Objects

It is possible to print a String (constant, or object) using %s or %o. Each use has its own
benefits.

Additional flags

In addition to the format type characters, there are optional flags that indicate finer detail in the
formatting. These characters always appear between the % and the format type character.

Flag
character

Usage

- Left-justify within the given field width; Right justification is the default
(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for
positive numbers. By default, only negative numbers are preceded with
a - sign.

(space) If no sign is going to be written, a blank space is inserted before the
value.

Used with e, E and f, it forces the written output to contain a decimal
point even if no digits would follow. By default, if no digits follow, no
decimal point is written.

Used with g or G the result is the same as with e or E but trailing zeros
are not removed.

0 Left-pads the number with zeroes (0) instead of spaces, where
padding is specified (see width sub-specifier).

Fieldwidth and precision

The fieldwidth and precision of the printed item may be specified. The fieldwidth and precision
take the form of decimal numbers between the % and the format type character (i, d, x, f, etc),
but after other flags. The precision is separated from the fieldwidth by a . character.

The fieldwidth is the minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The value is not truncated even
if the printed result is larger.

(Note: for %o - objects - the fieldwidth is not necessarily used as the width of the print output)

113 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The precision means different things for different format types:

Format type
character

Usage

d, i, u, x, X
(Integer)

Precision specifies the minimum number of digits to be written. If the value
to be written is shorter than this number, the result is padded with leading
zeros. The value is not truncated even if the result is longer. A precision of 0
means that no character is written for the value 0.

e, E and f (Float) Precision is the number of digits to be printed after the decimal point.

g and G (General) Precision is the maximum number of significant digits to be printed.

s (string) Precision is the maximum number of characters to be printed. By default all
characters are printed until the ending null character is encountered.

o (object) The fieldwidth and the precision values are passed to the object as the first
two format specifiers. See Formatting Objects.

I (IP address) Precision value is ignored

For example

-->PrintF("A float: %6.2f",1.06234)
A float 1.06-->

Control characters

To put line breaks in your output use \n in the format string.

See here for other control characters.

For example

-->PrintF("One line\nfollowed by another\n")
One line
followed by another
-->

Locking

PrintF will lock the object it is sent to for the duration of the message, and then unlock it
afterwards. Further locking does not occur in 'nested' printing, where a procedure that
includes printing statements (Print, PrintF) has been called from a printing statement.

Differences from C

These are the main differences between the PrintF message and printf() in C.

%o refers to printing objects - not octal, as octal is not commonly used.

114PrintF

Copyright © 2009-2021 Venom Control Systems Ltd

%n is not supported.

Additions in Venom2

There are new % format characters added by Venom2:

%b: print in binary - the parameter must be an integer.

%o: print an object - the parameter must be an object. The integer values of any (optional) width
and precision values are passed to the object as if they were the colon format specifiers used in
the Print command.

For example:

-->PrintF("The date is %5o and here's a number: %05i\n", clock, 100)
The date is 10-02-09 and here's a number: 00100
-->

Common object properties

This page lists some general properties that are common to some or all objects.

Die

Obj . Die

The Die message will generally attempt to clean up any resources the object may have used,
including memory.

If you send a message to a dead object the system will generally throw a runtime error.
However, sending the Die message to an already dead object will not result in the runtime error.

Some objects don't use any memory, and some of these objects don't take any action in
response to the Die message.

If an object does unusual things in response to Die then Die will be documented along with the
other messages.

Zero-Memory objects

Many objects don't take up any memory, or other resources, when they are created. An
example of this is the Digital object. When a Digital is created with Make or New, an object
handle is returned, which is simply a value. You can create an unlimited number of zero-
memory objects. Sometimes it is a useful convenience to do this, for example:

115 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

To set_a_channel(chan, state)
 New Digital (chan) . Asserted := state
End

 Also see AutoDestruct, which is useful for cleaning up temporary objects that do use memory
when they are no longer needed.

AlphaLCD

The AlphaLCD object type can drive alphanumeric displays based on the Hitachi HD44780U
LCD driver and compatible devices.

Summary of messages

Make

Bitmap

Put

Reset

Value

Print To

Creation

Make lcd AlphaLCD (Int linelength, Int rows [, Int loc
[, Int wrap]])

The first two parameters specify the number of characters per row, the number of rows on the
LCD device.

The location parameter describes the electronic interface between the LCD and the VM2 - see
below.

The wrap parameter indicates if you want text to wrap on to the next line on overflowing a line
end. The default is no wrapping as this works best for most applications. Set this parameter
non-zero for wrapping.

Connecting an LCD

Location refers to the method of connecting the LCD to the controller: the VM2 Parallel Bus, or
one of the I2C Buses.

Parallel Bus: Alphanumeric LCDs will plug directly into the Parallel Bus Alphanumeric

116AlphaLCD

Copyright © 2009-2021 Venom Control Systems Ltd

LCD socket on some of our standard Application Boards. To design your own board
refer to the circuit diagrams on our website.

I2C Bus: To connect LCDs via an I2C Bus a PCF8574 (digital I/O port) IC is required
to form the interface. The location parameter used can be any one of the equivalent
Digital channel numbers for the PCF8574. A large number of LCDs may be connected
to a single controller this way.

On creation, the display device is initialised and the display area cleared. The locations available
for connecting an alphanumeric LCD are listed in the table below.

Location Location numbers

Parallel Bus (Not available on VM2D) 0 (Default)

First I2C Bus 128, 136, 144, … , 248

Second I2C Bus 384, 392, 400, … , 504

Make lcd AlphaLCD (20,4)
Make disp AlphaLCD (40,2,160)

The first of the above examples creates a 20 char x 4-line display on the Parallel bus, whilst the
second creates a 40 char x 2-line display on the first I2C bus.

Multiple AlphaLCD objects may be created via the I2C buses at the various locations,
but only one AlphaLCD may be created on the Parallel bus.

The parameter rows must be in the range 1-4.

The parallel bus is not brought out to pins on the VM2D.

Bitmap

Bitmap (Int address)

This allows eight user-defined characters in the LCD controller IC to be defined. Each
character is defined by eight bytes. Only the five least significant bits are used. address is the
address in memory of 64 bytes of data defining all eight characters. The first eight bytes are for
character 0, and the next eight for character 1 and so on.

The following example uses an array of data in binary format that defines an ‘F’-shaped
character, so you can see the relationship between the bits in the definition and the pixels on the
LCD. Up to seven more characters could be defined.

Array user_chars(8,64)
 %11111, ;an 'F' character with an underline
 %10000,
 %10000,

117 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 %11110,
 %10000,
 %10000,
 %00000,
 %11111,
 $FF ;[Fill the rest of the array with $FF for now]
End

Lcd . Bitmap(user_chars . Pointer) ; define the characters
Lcd . Put (0) ; sends character 0 to the LCD.

 See also Array

 Using character number zero may be difficult in some circumstances, e.g. when printing to a

string or text buffer, which then prints to an LCD. The other characters don't have this problem.

Put

Put (Int)

This message displays a character on the AlphaLCD.

The character could be an ASCII value or may have been defined using AlphaLCD.Sprite.

Note: if using the AlphaLCD object in more than one task, it should be locked before
sending the Put messages, and unlocked afterwards.

-->lcd.lock
-->Repeat 5 lcd.put(65 + index0)
-->lcd.unlock

Reset

Reset

This message re-initialises the controller IC and refreshes the text on the display. Should you
wish to clear the display use:

-->Print To lcd, CLS

See also Accepting Print.

118AlphaLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value(int reg, int byte)

The value message allows you to write data directly to the LCD's command and data registers.

If reg is 0 then byte is written to the command register.

If reg is 1 then byte is written to the data register.

This command allows you to set the cursor and other functions not otherwise supported by the
AlphaLCD object.

See the HD44780U, or other LCD driver, datasheet for the list of commands.

Accepting Print

Print To lcd, <print list>

 Note: you can also print to an LCD by sending it the PrintF message.

Printing to an AlphaLCD object displays text on the LCD.

The object also understands the following printing keywords:

CR

Go to the beginning of the next line, scroll up a line if necessary.

Home

Go to the top left of the display.

CLS

Clear the display and go to the top left.

GOTOXY

Put the cursor at the given character position. The top left position is (0,0). The coordinates are
clipped to the size of the display.

-->Print To lcd , “Hello” , GOTOXY (10 , 1) , “World”

 See the wrap parameter.

119 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Analogue

The Analogue object type allows read and write access to analogue I/O.

Devices currently supported are:

VM2 on-board channels: 14 12-bit inputs, two of which may also be configured as 12-
bit outputs.

AD7998 and similar devices - on the I2C Bus.

MAX1236/1238 devices - on the I2C Bus

PCF8591 devices - on the I2C Bus

Audio output

Channel $14 may be used to generate audio output signals - e.g. to play WAV files. See Send.

Summary of Messages

Make

Period

Send

Value

Print

Creation

There are several on-board and off-board analogue drivers available.

Onboard Analogue I/O (12 bit, many inputs, 2 outputs)

AD7998 and variants (I2C Bus, 12 bit, several inputs)

MAX1236/1238 (I2C Bus, 12 bit, several inputs)

PCF8591 (I2C Bus, 8-bit, 4 inputs, 1 output)

Other drivers may be written in Venom code, or added to Venom on request. Please contact us
to find out more about this.

On-board

Onboard Analogue input

Make obj Analogue (Int channel)

This creates an analogue input object that can read one of the analogue input channels on the
VM2.

120Analogue

Copyright © 2009-2021 Venom Control Systems Ltd

Channels in the ranges $10 - $17 and $30 - $35 are currently supported as 12-bit analogue
inputs.

For example:

--> Make voltage_reading Analogue($30) ;an analogue input on the VM2

VM2 Channels that can be 12-bit analogue inputs are in the ranges $10-$17, $30-$35 and
$66-$6A.

Channels $66-$6A are not available on the VM2D.

You can adjust the analogue input to match the source impedance of the voltage being read
using Period.

Analogue is a Zero-Memory object

Onboard Analogue output

Make obj Analogue (Int channel, 1 [, Int no_buf])

This creates an analogue output object that can drive one of the analogue output channels on the
VM2. Channels $14 and $15 may be used for 12-bit analogue output.

For example:

--> Make control_voltage Analogue($14, 1) ;an analogue output on the VM2

By default there is a buffer amplifier put in the circuit which allows the output to drive relatively
low impedance loads, but limits the output range to less that the supply rails. The optional
parameter no_buf, when supplied and non-zero, disables the DAC's internal output buffer
amplifier. This allows the output to reach the supply rails but reduces the output drive
considerably. See the STM32F103 datasheet for more details.

VM2 Channels that can be 12-bit analogue outputs are $14 and $15.

Analogue is a Zero-Memory object

121 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

AD7998, etc

AD7998 and variants

Variants include: AD7997, and the -0 and -1 addressing options.

Make obj Analogue (0, Int bus, Int I2C_add [, Int
channel])

bus should be 1 or 2 for which I2C Bus you wish to use.

I2C_add should be in the range 64 - 68. Note: this clashes with the PCF8574 address
range.

channel is optional (it defaults to 0), or should be in the range 0-7.

For example, an object to read channel 2:

Make a Analogue(0,1,64,2)
Print a.Value

Read any channel

If you make an analogue object like this on channel 0, you can later select which channel you
wish to read when you call the Value message. This can sometimes be more convenient than
defining the particular channel in the Make. Here is an object that will read channel 0 by default,
but will read any channel if you so specify.

Make a Analogue(0,1,64) ;Set up to read channel 0
Print a.Value ;Read channel 0
Print a.Value(2) ;Ask to read channel 2

Other options

There are many other options available on the AD7998 than are accessible through this driver.
You can use the I2C Bus object to access them.

For your information, the Make command does not communicate with the device at all, and the
Value message uses the device in Command Mode (Mode 2), and does a simple read of the
selected channel.

Analogue is a Zero-Memory object

MAX1236, etc

MAX1236/1238

Make obj Analogue (Int type, Int bus , Int channel [,
Int setup])

type should be 4 for MAX1236 and 5 for MAX1238

122Analogue

Copyright © 2009-2021 Venom Control Systems Ltd

bus should be 1 or 2 for which I2C Bus you wish to use.

setup is an optional parameter - it defines the setup register value sent to the device each time it
is read. If setup is not supplied, a default value is used. See below.

channel should be in the range 0-3 for the 1236 and 0-11 for the 1238.

For example, an object to read channel 2:

Make a Analogue(4,1,2)
Print a.Value

Read any channel

If you make an analogue object like this on channel 0, you can later select which channel you
wish to read when you call the Value message. This can sometimes be more convenient than
defining the particular channel in the Make. Here is an object that will read channel 0 by default,
but will read any channel if you so specify.

Make a Analogue(4,1,0) ;Set up to read channel 0
Print a.Value ;Read channel 0
Print a.Value(2) ;Ask to read channel 2

Other options

There are many other options available on the MAX1236/8 than are accessible through this
driver. You can use multiple objects with different setup register values, or you can access the
IC directly using the I2C Bus object.

The setup register value is optionally selectable during Make (default value $D2), however the
configuration register value is fixed at $61, plus the channel selection bits. See the device
datasheet for the meaning of the bits in these registers.

For your information, the Make command does not communicate with the device at all, and the
Value message sends the setup register value followed by the configuration register value, and
then does a simple read of the selected channel.

Analogue is a Zero-Memory object

PCF8591

PCF8591

Make obj Analogue (2, Int bus, Int I2C_add [, Int
channel])

bus should be 1 or 2 for which I2C Bus you wish to use.

I2C_add should be in the range 144 - 158. (It is 144 + A2*8 + A1*4 + A0*2, where A0-A2
are 0 or 1 depending on which state the address input pins on the device are set to).

channel is optional (it defaults to 0), or should be in the range 0-3.

123 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

For example, an object to read channel 2 of a device at I2C address 144:

Make a Analogue(2,1,144,2)
Print a.Value

Read any channel

If you make an analogue object like this on channel 0, you can later select which channel you
wish to read when you call the Value message. This can sometimes be more convenient than
defining the particular channel in the Make. Here is an object that will read channel 0 by default,
but will read any channel if you so specify.

Make a Analogue(2,1,144) ;Set up to read channel 0
Print a.Value ;Read channel 0
Print a.Value(2) ;Ask to read channel 2

Set the output

To set the value of the single analogue output, create an object without a channel number, and
set it's value:

Make a Analogue(2,1,144)
a.Value := 128

Other options

There are many other options available on the PCF8591 than are accessible through this driver.
You can use the I2C Bus object to access them.

Analogue is a Zero-Memory object

Period

Period (Int period)

Period allows the sample period of the on-board ADC reading to be set - which allows different
source impedances to be accommodated. Higher source impedances need a longer sampling
period to achieve the same accuracy.

The default value of period is 0 - the fastest - with the lowest source impedance requirement.

When the VM2 is running at 72MHz, the ADC is programmed to run at 12MHz (Main clock
divided by 6). The table gives the maximum source impedance for a 0.25lsb error due to source
impedance for each speed setting, and also the number of cycles taken to read an input.

124Analogue

Copyright © 2009-2021 Venom Control Systems Ltd

period ADC clock Cycles Max Source Impedance (K Ohms)

0 1.5 1.2

1 7.5 10

2 13.5 19

3 28.5 41

4 41.5 60

5 55.5 80

6 71.5 104

7 239.5 350

 The overall time taken to return a result is longer than the ADC clock cycles of the sample
time, and includes the overhead of sending the message and controlling the measurement
process.

Queue

Queue Int

Queue returns the number of audio output samples remaining to be sent out when Send is called.

Example

audio.Send("mysound.wav")
Await audio.Queue IsFalse ; wait for audio output to end.

Send

Send(String filepath)

Send(Int address, Int size)

The Analogue Send message can be used to send audio to a DAC output on the VM2.
Currently this only works for channel $14.

The Send message has two forms: one where it plays audio files from the Flash Filing System,
and one where it takes an address of the data, anywhere in memory, and the size of the data, as
two integers.

125 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Playing audio files

Example

Make audio Analogue($14,1)
audio.Send("mysound.wav") ; Play file in root directory
audio.Send("mydir/mysound.wav"); Play file in sub directory

Notes

Audio files must occupy contiguous blocks in the Flash Filing System memory, which entails
loading them into the filing system in a particular way.

The file formats supported are 'WAV' with mono, 8-bit unsigned PCM data. The sample rate
has been tested up to 44KHz. If the file does not contain WAV header information that matches
these parameters then the file will not play.

(Note: You can also play 16-bit WAV files if the data chunk of the file has been converted from
signed to unsigned. The playback is actually at 12 bits due to the resolution of the VM2's
DAC, but still the higher sample resolution reduces the noise heard on quieter sounds. Please
contact us if you would like to try this option.)

You can convert other audio file formats into WAV formats using Audacity, which is available
free on the Internet. We have been using version 2.0.5.

Before you save a file in the new format, set the bit rate you need in the Project Rate box
(bottom left in the Audacity window). 11,025 Hz seems fine for most purposes.

To save a file in the correct format for the VM2 you should use Audacity's File > Export
... menu. You will need to select Save as type: 'Other uncompressed files', and using the
Options... button set Header to 'WAV (Microsoft)' and Encoding to 'Unsigned 8 bit PCM'.

Note: You can't play wav files that are in the Flash File System at the same time as writing to
or erasing files in the Flash File System. There are several different approaches to working
around this. See below.

The Queue message returns the number of samples remaining to be sent out. The audio
output has finished when Queue is zero.

Playing audio data direct from memory

Currently the only audio data format supported is 8-bit unsigned PCM data at 11,025Hz sample
rate.

You should supply the address of the data in memory and the length of the data in bytes.

audio.Send(addr,len) ; Play audio data in memory

126Analogue

Copyright © 2009-2021 Venom Control Systems Ltd

Work-arounds: Playing audio and writing/erasing flash files concurrently

The basic problem is that audio data is accessed from the flash by an interrupt, and that this
interrupt can run when the flash memory is in the middle of a program or erase operation. When
the flash is in program or erase mode, data cannot be read from it.

There are three basic work-arounds.

1. Lock the flash file system while the sound plays

2. Play the sound from RAM instead of flash

3. Use the Flash file system for audio and other read-only file operations (bitmaps,
fonts, ...), and use a different file system (RAM, SD Card, USB host) for any other filing
requirements.

1. Locking the file system

Example code to play sounds from the flash file system only while it is locked:

This version waits for the file system to become unlocked before playing the sound. You may
have to wait a long time if the file data being written is large.

ffs.Lock ; wait for file system to become free.
audio.Send("mysound.wav") ; Play file in root directory
await audio.Queue IsFalse
ffs.Unlock

Here a 'non-blocking' solution. If the file system is locked then playing the sound is ignored.
Alternative action may be taken instead.

If ffs.TestLock
[
 audio.Send("mysound.wav") ; Play file in root directory
 await audio.Queue IsFalse
 ffs.Unlock
]
Else
[
 ;alternative action, if sound could not be played.
]

2. Playing the sound from RAM

For this you will need to copy the audio data from the flash file into an array (or RAM file) and
pass the address of the data to Send.

3. Use the Flash file system only for read-only file operations

If you never need to write to files, or if you can use another file system for your writable files,
you can play audio directly from Flash files.

127 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Many applications will use the Flash File System as a read-only system - reading fonts and
bitmaps, for example. You can ensure that the Flash File System is never written to by creating
it with a cache size of zero in your init procedure.

It may also be possible to use RAM, SD Card, or USB Host file systems if you need to write
files.

Value

Value Int

This active variable allows analogue values to be read from Analogue input objects, and
analogue values to be written to Analogue output objects.

The value is not the voltage, but the ‘step number’ in the analogue range.

Note: the output impedance of the DACs is quite high and may need buffering externally to the
VM2 - check the DAC drive capability in the device datasheet.

 See Period to adjust on-board analogue input to match the source impedance of the voltage
being read

Printing

Print <Analogue>

Prints the the analogue object in 'debug' format.

For example:

128Analogue

Copyright © 2009-2021 Venom Control Systems Ltd

-->Print a
[Analogue: 317]

Here the number is the value of the input or output.

Array

Array is an object intended for storing a fixed amount of data. For example, Arrays may be
used to store a look-up table for linearising a sensor, store a set of strings for implementing a
generalised menu system, or hold a table of procedure pointers.

Arrays may be constant - that is their contents are defined at compile-time, they naturally reside
in Read Only Memory (ROM), and their contents are fixed once you have written your
program - just like procedures. Constant arrays are created in a special way: Creating constant
arrays.

Arrays may also be variable - that is they are created during program execution (using Make,
New or .Copy), they naturally reside in Read/Write Memory (RAM), and their contents may
be changed at any time after creation. See Make for how to create them.

ARRAYs can hold data of the following types:

8, 16 or 32-bit integers

Floating point numbers

Pointers (to global variables)

Strings (variable or constant)

Each array holds only data of a single type.

If you need an object that can hold any type of data, use Buffer of Any.

Summary of messages

Make

Address

Copy
Die

Element

Find

Length

Sort

Print

129 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Here we will look at creating variable arrays. See here for creating constant arrays

Make obj Array (type , Int n , …)

type indicates the type of data that the array will hold:

Type Element data type Range of values element can
hold

Int 8 8-bit integer (unsigned) 0 to 255

Int 16 16-bit integer (signed) -32768 to +32767

Unsigned Int 16 16-bit integer (unsigned) 0 to 65535

Int or Int 32 32-bit integer (signed) -2,147,483,648 to
2,147,483,647

Float Floating point (IEEE single
precision)

~ ±1.0E±38, ~7 digtits of
precision

String String constant Any string constant or String
object

@dummy* Pointer to a global Any pointer to a global variable

* or any pointer to a global variable.

n is the number of elements in the array.

The indicate that you can put some initialising data in the parameter list. If there are fewer
initialisers than elements, then the value of the last initialiser is used to fill the array. If no
initialisers are present, then the array is not initialised: the data may be any random set. Take
care not to put too many initialisers in as you may run out of space on the Venom-SC stack. A
sensible limit is 10 or so. If you need more initialisers than this use a constant Array and take a
copy of it.

 Arrays use a single, contiguous block of RAM that is large enough to hold all their data, plus
18 bytes.

130Array

Copyright © 2009-2021 Venom Control Systems Ltd

Example code

Some simple arrays are created below:

Make b Array(Int, 25, 1 , 0) ; Array of 25 32-bit integers, starting with 1, then all 0.
Make a Array(Int 8, 100, 0) ; Array of 100 8-bit integers, all initialised to 0
Make c Array(Float, 10, 0.0) ; Array of 10 floating point numbers, all initialised to 0.0

Using variable Arrays of strings

The following bit of code illustrates the use of a variable array of strings. Here we are using both
String objects and string constants in the array - it can handle both. See if you can work out
what is going on here; you may need to learn about String objects, array initialisers (above), and
the Element message.

-->Make sa Array (String,5,"X") ;New array - each element is initialised to constant string "X"
-->Repeat 3 [sa.(Index0) := New String(10)] ; 3 new 10-character string objects put in array
-->sa.(0).Put("Hello") ; Two of the new string objects have text loaded in them
-->sa.(1).Put("Goodbye")
-->Print sa ; print out what's in there:
Hello
Goodbye

X
X
-->

 Please see the Die message for how arrays of strings are handled.

Address

Address Int

Address returns the memory address of start of data in the array.

 Be very careful if you write to a raw memory address as it's possible to corrupt the system
heap if you make any mistakes.

Data is arranged contiguously: elements are in order with no gaps. The address will always be
aligned to the number of bytes required by the largest object used by the host processor. In the
case of the VM2 it will be aligned to an even address.

Notes:

Constant arrays of strings are arranged in memory as a list of pointers, followed by all the string

131 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

data.

Copy

Copy Array

Copy returns a new, writable copy of an array.

For example:

variable_data := lookup_data.Copy

String arrays

When you copy an Array of Strings then Copy doesn't make copies of the strings held by the
original array, instead it makes copies of the pointers to the same strings.

Die

Die
Die(Int leave_contents)

The Die message removes a variable Array from memory. However, an Array of Strings
could 'contain' (point to) String objects. Die, by default also removes these String objects from
memory.

This is an example of the default behaviour:

Make Array_of_strings Array(String,5)
str := New String(10)
Print To str, "Hello"
Array_of_strings.(0) := (str) ; Put the String in the Array.
...
Array_of_strings.Die ; Removes the Array and the String.

If for some reason you just want to remove the Array of Strings, and not any String objects it
points to then you can pass a non-zero parameter to Die:

Array_of_strings.Die(1) ; Removes the Array but not the string it holds.

Note that AutoDestruct will use the default behaviour, and so remove all String objects pointed
to by the Array.

132Array

Copyright © 2009-2021 Venom Control Systems Ltd

Element

Element (Int num) Any
<object>.(Int num) Any

Individual elements in an array are accessed using the Element message. The shortcut syntax,
missing out the Element message name, is allowed.

The parameter num specifies the element number.

Elements will be checked for the correct type when they are written. For integer arrays, the
written values will be truncated to the correct size by removing higher-order bytes.

Examples

Array phrases (String,2)
 "Hello"
 "Goodbye"
End

-->Print phrases . Element (1)
Goodbye-->

Venom abbreviation allows .() to replace .Element(), so you could also use:

-->Print phrases.(0)
Hello-->

And...

-->Make data_list Array (8, 10, 0)
-->Print data_list.(0)
 0-->
-->data_list.(0) := 10
-->Print data_list.(0)
 10-->

Find

Find(target [, [Int startpos [, Int flags]]) Int

133 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Return Value The first array index where the target was found, or -1 if not found

target The value to find, which must be an integer, float or string and must match the
array data type

startposWhere to start the search. Default value of nil or -1 means search the whole
array (i.e. 0 for forward search, (array length) - 1 for reverse search

flags This is a bitmapped combination of values.

Bit 0

Bit 1

Bit 2

(Linear) Search in reverse order

(Binary) Array is sorted in descending order

Ignore case in strings

Use a faster binary chop search algorithm

Note that when using the binary chop search on an array of strings, the case sensitivity and
direction settings for the search must match those used when the sorting was done.

For both linear and binary search, if there is more than one element matching the target value, the
index returned is the lowest matching index for a forward search or the highest matching index
for a reverse search.

Length

Length Int

Length returns the number of elements in the array.

Sort

Sort([Int sort_type])

Sorts an array, by default in ascending order and (if an array of strings) case-sensitively.

sort_typeBit-mapped flags controlling the type of sort. Default value = 0

Bit 0 (value 1) sets descending order

Bit 1 (value 2) sets a case-insensitive sort for strings

Sort can be used for arrays of strings and all integer data types, and distinguishes correctly
between signed and unsigned integer data types.

134Array

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT

Print <Array>

Printing the array will print out each of the elements of the array in order, each element on a new
line.

For example

-->Print a
 1
 2
 5
 7
-->

Formatting print output

Print <Array>:format

If colon formatting is used, the specified format is applied to each element as it is printed.

-->Print a:1
1
2
5
7
-->

Buffer

Buffers can be used to store lists of data: integers, floating-point values, text or even other
objects. Buffers dynamically allocate as much memory as they need to store the data they hold,
plus an overhead. They may be used to make FIFO (queue-like) and FILO (stack-like)
structures.

Text Buffers

Text Buffers (buffers containing textual information) may be used for string or text operations in
Venom2. See also String objects.

Buffer of Any

There is a special kind of Buffer known as 'Buffer of Any' that can hold lists of any kind of entity,
including lists of other buffers, numbers, arrays, strings, etc.

It is easy to convert a block of text containing many lines into a Buffer of Any containing a set of
String objects, each String holding one line of the text. See Accepting Print.

135 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make

Die

Element

Empty

Find

Flush

Get

GetLast

Insert

Length

Put

Queue

ReadPoint

Remove

Reset

Sort

Value

Print

Print To

Creation

Make <object> Buffer (type)

The type parameter specifies the type of data to be stored in the buffer; it must be one of those
shown in the following table:

type Element data type

Int 8 8-bit unsigned integer

Int 16 16-bit signed integer

Int 32 32-bit signed integer

Float Floating point

Char Character (i.e. a text buffer)

Any Any type

136Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

The following example creates a buffer with 8-bit integer elements:

-->Make buffer_object Buffer (Int 8)
And this line creates a text buffer, i.e. a buffer with character elements:

-->Make text_buffer Buffer(Char)

Buffers use a minimum of 316 bytes of memory each. Each buffer has a header block
of 54 bytes, and one or more data blocks of 262 bytes. Each data block can hold 256
bytes of data.

Buffers of integers hold data in 8-, 16- or 32-bit elements. Buffers of floats use 32-bit
elements. Buffers of Any use 64-bit elements (8 bytes).

Buffer of Any

A buffer that can hold any kind of entity is called a Buffer of Any:

-->Make buffOfAny Buffer(Any)
You can use this kind of buffer to hold lists of objects, including lists of Buffers, Arrays or
Strings, for example.

Printing to a Buffer of Any

One of the most common things a Buffer of Any is used for is to hold lists of String objects.

If you print text to a Buffer of Any, then the text will be 'Put' into the Buffer of Any as a set of
String objects, each String holding just one line of the text.

So to create a list of all the files in a file system, where each file name is held by a String object,
and all the strings are held by a Buffer of Any you only have to do this:

Make listing Buffer(Any)
Print To listing, ffs

After you have finished with the listing you can send .Die to it, and this will remove all the
String objects it contains. Or you may be able to use AutoDestruct.

Buffer of Any Tutorial

Because Buffers of Any can hold objects, you can use them to do things that would otherwise
take a lot of coding.

For example to send a Value message to an object held in the nth element of a buffer of any, you
can do this:

buffOfAny.(n).Value

You can find the data type of something held in a buffer of any using the TypeOf operator:

137 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Print TypeOf(buffOfAny.(n))

Loading a Buffer of Any with new objects

Often when using a Buffer of Any you will wish to load it with a set of new objects, for example
a set of String objects.

This code loads the buffer with 10 new strings, each with a capacity of 20 characters.

Repeat 10
 buffOfAny.Put(New String(20))

Removing the Buffer and it's sub-objects

If at a later time you wish to remove the buffer and the strings it holds you can use this:

buffOfAny.Die
Die removes the buffer and any sub-objects too.

(There is a version of Die that doesn't remove the sub-objects, in case that is the behaviour you
need.)

Memory leak examples

The following are all examples of how not to use the Buffer of Any, in that they will result in a
memory leak.

buffOfAny.(5) := New String(20)
...; some other processing
buffOfAny.(5) := <anything else>

In the code above, the element (5) of the buffer was overwritten with a new value, but the
original string wasn't removed, so the string is lost, together with it's memory.

Repeat 10
 buffOfAny.(Index0) := New String(20)
buffOfAny.Empty

This time all the strings in the buffer were lost.

You can check for memory leaks in your code by using the Garbage Scanner.

138Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

Die

Die

The Die message removes the Buffer from memory.

Garbage collection in Buffer of Any

A Buffer of Any could 'contain' (i.e. hold references to) other objects. By default Die also
removes all the contained objects from memory.

This is an example of the default behaviour:

Make buffOfAny Buffer(Any)
str := New String(10)
Print To str, "Hello"
buffOfAny.Put(str)
...
buffOfAny.Die ; Removes the buffer and the string.

Shallow removal

If you just want to remove the Buffer of Any, but not remove any sub-objects it contains then
you can pass a non-zero integer parameter to Die.

Die (Int shallow)

For example:

...
buffOfAny.Die(1) ; Removes the buffer but not the string.

Note that AutoDestruct sends Die with no parameter and thus removes all sub-objects.

139 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Element

Element(Int item_number) Any

<Buffer>.(Int item_number) Any

The Element() active variable allows both read and write random access to the contents of a
buffer as if it were an array. Venom abbreviated syntax allows the use of .() to substitute for
.Element().

Empty

Empty

Empty throws away any data held in a buffer, freeing up all but the minimum memory used by the
Buffer.

However, a Buffer of Any could 'contain' (point to) 'sub-objects'. By default Empty also
removes sub-objects from memory.

This is an example of the default behaviour:

Make buff_of_any Buffer(Any)
str := New String(10)
Print To str, "Hello"
buff_of_any.Put(str)
...
buff_of_any.Empty ; Empties the buffer and removes the string: Str is no longer valid.

Garbage collection in Buffer of Any

obj . Empty(Int shallow)

If for some reason you just want to remove the Buffer of Any, but not remove any sub-objects
it contains then you can pass a non-zero parameter to Empty:

Make buff_of_any Buffer(Any)
Make str String(10)
Print To str, "Hello"
buff_of_any.Put(str)
...
buff_of_any.Empty(1) ; Empties the buffer but leaves the string accessible though Str

140Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

See also Flush.

Find

Text Buffers

Find (String str [, Int start_pos]) Int
Find (Buffer buf [, Int start_pos]) Int

Find searches a text buffer for the search string specified by either a string (str) or another text
buffer (buf) starting at the optional element specified by start_pos (or from the beginning of the
buffer if no second parameter is supplied). If a match is found, the element position at which the
specified text begins is returned, otherwise the value -1 is returned. The search string (str, or
buf) is limited to 256 characters in length.

The following example finds the start position of the first occurrence of a string in the buffer:

Make b buffer(Char)
b.put("text text text")
pos := b . Find ("tex", 3) ; pos will be 5

The example below shows the Find message being used to locate the text contained in buffer b2
within buffer b:

Make b2 buffer(Char)
b2.Put("xt")
pos := b . Find (b2) ; pos will be 2

Integer Buffers

Find (Int value [, Int start_pos]) Int

Find searches an integer buffer for a particular value, starting from beginning, or an optional start
position.

It returns the position the value was found at, or -1 if it wasn't found.

Buffer Of Any

Find (any value [, start_pos [, int flags [, any
xflags]]]) Int

For a buffer of any where the elements are all objects that have a suitable Compare method,
this will find an element that "matches" the given value.

The search is much more sophisticated that those described above, with options for forward or
reverse search, and also a "binary chop" search on sorted data, which is much faster than a linear
search on all but the smallest buffer sizes.

141 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Returned value is index of found element, or -1 if none found.

The objects can be strings or objects defined in the Venom program using the Class keyword.

valueAny value compatible with the object's Compare method

start_posWhere to start searching. Forward searches are from this point to end of buffer,
reverse search from this point to beginning (element 0)

If not specified, nil or -1, use default of 0 for forward search or last element of
buffer for reverse.

flagsBitmapped flags controlling type of search

Bit 0 = reverse search

Bit 1 = case insensitive search for strings (passed as 0 or 1 in second parameter to
Compare method)

Bit 2 = use binary chop search algorithm on buffer that is in sorted order.

Sort direction and case sensitivity settings must match those used in Find.

xflagsOptional third parameter passed unchanged to the object's Compare method if it is
supplied here.

Specification of Compare Method

Compare(value [, int ignore_case [, xflags]]) Int

Returns an integer which is:

negative if the object is "lower" than the supplied value

positive if the object is "higher" than the supplied value

0 if the object "matches" the supplied value

value The value to compare with some element or property of the object

ignore_caseFor string values, non-zero for a case-insensitive match (default or 0: case
sensitive) based on bit 1 of the flags parameter passed to the Find message.
The Compare method must accept this parameter, though it may not always be
supplied.

xflags Optional extra flags, number or other variable to specify how the comparison is
done, e.g. you may want to select which of an object's member values to
compare with the search target. The Compare method doesn't have to support
this unless the Find is used with explicit fourth parameter.

Note that string objects comply with this specification, though they don't use the xflags
parameter.

Type of First Parameter of Compare

If the Buffer is going to be sorted, the Compare method must accept an instance of the object

142Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

type as its first parameter for the sort message. For use by the buffer Find method, the first
parameter is likely to be a string or numeric value. For both Sort and Find to work, the
Compare method must therefore distinguish between the two data types of the first parameter.
For example:

Class myclass
 strval string

 To Compare(x, [ignorecase])
 if Typeof(x) = Typeof(This)
 Return strval.Compare(x.strval, ignorecase)
 else
 Return strval.Compare(x, ignorecase)
 End

 ;....
End ; Class

Example of use of xflags

xflags is used to select whether to compare with strval1 or strval2

Class myclass
 strval1 string
 strval2 string

 To Compare(x, [ignorecase, xflags])
 If Typeof(x) = Typeof(This)
 If (xflags)
 Return strval1.Compare(x.strval1, ignorecase)
 Else
 Return strval2.Compare(x.strval, ignorecase)
 Else
 if (xflags)
 Return strval1.Compare(x, ignorecase)
 Else
 Return strval2.Compare(x, ignorecase)
 End

 ;....
End ; Class

143 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Flush

Flush

Flush removes the data items that are behind the current ReadPoint. If enough data items
are removed, the memory they occupied is released back to the system.

The ReadPoint is updated when data is read from the buffer using Get, or by directly
writing to the buffer's ReadPoint. It is also updated by messages such as Flush and
Empty.

Garbage collection in Buffer of Any

 Note: Currently there is no garbage collection for Buffers of Any when Flush is called,
unlike for Die and Empty.

See also Empty, Get, ReadPoint.

Get

Get Any

Get returns the data item from the buffer at the current readpoint and then advances the
readpoint.

Attempting to read past the end of data will result in an 'Array index out of range' error.

See also Put, ReadPoint, Flush

GetLast

GetLast Any

GetLast removes one data item from the end of the buffer and returns it. It may be used to
delete characters from the end of a text buffer, or to implement a FILO buffer, or ‘stack’: Put is
used to push data on to the stack, and GetLast removes it. Length may be used to check how
much data is held in the Buffer.

144Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

Insert

Insert (Int character, Int pos)
Insert (String str, Int pos)
Insert (Buffer buf, Int pos)

This message is only available for buffers containing text. It allows text in the form of a single
character, string or text buffer to be inserted into the buffer at the element position specified by
pos. The following example inserts a string into a buffer:

Make b Buffer("text text text")
b.Insert("XXX" , 3)
PRINT b

... prints:

texXXXt text text

See also Remove

Length

Length Int

Length returns the number of data items currently held in the buffer.

See also Queue, Put.

Put

Put (Any item)

Put adds a data item to the end of the buffer.

Repeat 5 buff.put(index0)
The data item has to be of the correct type for the buffer to accept, else a Type Mismatch error
is thrown.

Large integer values, that would overflow 8 or 16-bit integer buffer elements, are truncated.

145 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Put a block

Put (string/array data , Int start, Int size)

This form of Put efficiently appends a block of consecutive elements from an integer or float
array to a buffer of identical element type, or from a string to a text buffer.

If the optional parameters start and size are not given, the whole array or string is copied.

Make b buffer(Char)
b.Put("Hello")

This form of Put is faster than repeated single element Put message, but for integers the
element types must be the same size (8, 16 or 32 bit).

Note: if using the Buffer object in more than one task, you may wish to lock it before a
group of Put messages are issued, and unlock it afterwards.

See also Accepting Print, Buffer.Get, and also Locking in the Venom2 Tutorial.

Queue

Queue Int

Queue returns the number of data items that may be processed by calling Get.

See also Put, Get ReadPoint

ReadPoint

ReadPoint Int

The ReadPoint holds the position (or index) of the data item that the next call to Get will
return.

ReadPoint is an active variable, so may be read and written to (or set).

When there are no more elements to read using Get, ReadPoint has the same value as
Length.

The readpoint may be set between zero and Length.

See also Reset, Get, Flush.

146Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

Remove

Remove(Int start, Int size)

Remove will remove a section of text from any point inside a text buffer, starting from the
position given by start, and number of characters given by size. If the section to remove
exceeds the buffer boundaries, then an error is given.

 Insert, GetLast

Reset

Reset

Reset resets the readpoint of the buffer back to the start of the buffer.

See also ReadPoint.

Sort

Sort ([Int sort_type, Any xflags])

For a buffer of Any in which all the elements are objects of the same type having a Compare
method, Sort rearranges the objects into alphabetical order.

The default action, equivalent to a sort_type value of 0, is for sorting to be case sensitive
and in ascending order.

Sort_type Direction Case

0 (default) ascending Case sensitive

1 descending Case sensitive

2 ascending Case insensitive

3 descending Case insensitive

In a case sensitive sort, all upper case letters are treated as lower than all lower case letters.

The "ignore case" flag is passed on as an optional second parameter to the buffer element
object's Compare method. In particular this makes is compatible with string objects; for user
defined Classes a compatible Compare method must be written.

The xflags parameter, if present, is passed as a 2nd parameter to the object's Compare
method.

147 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Specification of Compare Method

Compare(obj2 [, int ignore_case [, xflags]]) Int

Returns an integer which is:

Negative if the object is "lower" than the supplied object reference obj2

Positive if the object is "higher" than obj2

0 if the object "matches" obj2

value The value to compare with some element or property of the object

ignore_caseFor string values, non-zero for a case-insensitive match (default or 0: case
sensitive) based on bit 1 of the flags parameter passed to the Find message.

xflags Optional extra flags, number or other variable to specify how the comparison is
done, e.g. you may want to select which of an object's member values to
compare with the search target.

Note that string objects comply with this specification, though they don't use the xflags
parameter.

Example

This exploits printing to a buffer of any - See Accepting Print

-->make b buffer(Any)
-->print to b, "XYZ", CR, "pqrst", CR, "abc", CR, "123", CR
-->b.sort
-->print b
123
XYZ
abc
pqrst
-->b.sort(1)
-->print b
pqrst
abc
XYZ
123
-->b.sort(2)
-->print b
123
abc
pqrst
XYZ
-->b.sort(3)
-->print b

148Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

XYZ
pqrst
abc
123
-->

Practical Example

Make fs filesystem("FLA")
Make b buffer(Any)
Print to b, fs:0
b.sort(2) ; b now has list of file names in alphabetical order

Value

Value Int
Value(Int base) Int
Value(Float) Float

Value will convert the text in a text buffer to a numeric value. Beginning at the start of a buffer, it
skips over any leading white space characters (space, tab, new line) and takes account of
numbers prefixed with a '+' or a '-' sign. It stops reading numeric characters when it encounters
a character that isn't valid for the kind of number being looked for.

If there are no parameters, Value looks for a decimal integer:

x := textbuffer.Value ; Convert to a decimal number

If an integer parameter (base) is given then this indicates what number base is to be used:

base Convert text to

10 Decimal integer

2 Binary integer

16 Hexadecimal integer

x := textbuffer.Value(16) ; convert to a hexadecimal number

If the parameter is the type indicator Float then the text is converted to a floating point
number:

x := textbuffer.Value(Float) ; convert to a floating point number

149 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Notes

Value does not 'Get' any characters from the buffer, nor does it use or alter the ReadPoint of the
buffer - it only looks at the text in the buffer and returns the numeric value of the first number it
finds.

Integer bases from 2 to 36 may be used to read numbers in any base from 2 to 36. In bases
above 10, the characters A-Z or a-z are used for the digits above 9.

If no numeric characters are seen, the value returned is zero, either integer or float.

If an integer value exceeds the maximum absolute value for an integer, the largest value that has
the correct polarity is returned.

Floating point numbers in the text buffer may include an exponent suffix, e.g. 1.0e+12

See also TextAnalyser

Accepting Print

Printing to a 'Text Buffer'

Print To <Buffer>, <print item>, ...

Text buffers (buffers of character data) are able to accept print. The print output is simply
appended to any existing text in the buffer.

Example:

Make b Buffer(Char)
Print To b, "Hello World", CR

See also PrintF, Insert.

 Note: you can also print to an object by sending it the PrintF message.

Printing to a 'Buffer of Any'

Print To <Buffer>, <print item>, ...

Buffer of Any may also accept print. In this case, a new string object is created to hold each line
of text in the print output, and the string object is Put at the end of the Buffer.

A line of text is delimited by the '\n' character or CR. If there is no '\n' or CR at the end of a
Print statement then the end of the Print statement is assumed to be the end of a line of text.

For example, this code

Make b Buffer(Any)
Print To b, "Hello World", CR "This is another line"
Repeat b.Length

150Buffer

Copyright © 2009-2021 Venom Control Systems Ltd

 PrintF("<%S>", b.(Index0))

gives this output

<Hello World><This is another line>

 Note: the maximum length of any individual line is 200 characters, the size of Venom's
internal 'Print Job' buffer. Lines overflowing this limit will appear in separate strings. The overall
length of the text is only limited by the memory available.

Garbage collection

When you print to a Buffer of Any, new string objects are created to hold the lines of text.
These will most likely need to be removed from memory at a later time – when they and the
buffer are no longer needed. This is easy to manage in most situations as a Buffer of Any will
automatically remove all objects it references when it is sent the Die message. It is often useful
to use AutoDestruct on the Buffer of Any to achieve this.

Printing

Print <Buffer>

Print <Buffer> : nChars

Print <Buffer> : start : nChars

Text buffers

Printing a text buffer prints out all the text in the buffer.

If the optional format parameters are used then any section of the buffer may be printed, just as
with strings.

One format parameter specifies that the first n characters are to be printed, or the last n if n is
negative.

Two format parameters specify printing of any portion of the string: the first parameter is the start
position, and the second is the number of characters to print.

Parameter values that imply characters before the start, or after the end of the buffer will result in
the print output being padded with spaces at the start or end.

Example:

-->Make b Buffer(Char)
-->b.Put("The quick brown fox")
-->Print b:9
The quick
-->Print b:-9
brown fox

151 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

-->Print b:3:10
 quick bro
-->Print b:-5:7
 Th

Numeric buffers

Print <Buffer> [: f1 : ...]

Printing a numeric Buffer prints out each of its elements in a vertical column, with optional format
specifiers being used directly on each of the elements as if it were a single number being printed.

-->Make b buffer(1.0)
-->b.Put(1.324)
-->b.Put(100.0)
-->Print b:5:2
 1.32
100.00

The format parameters supplied must be acceptable to all the items in the Buffer, else an
error is generated.

CANBus

The CANBus object allows the VM2 to communicate over CAN – the widely used networking
standard for Controller Area Networks.

The CANBus object implements low level CAN communication protocols.

It supports the CAN protocols version 2.0A and B.

It does not implement any of the higher level protocols such as CAN Open, CAN Kingdom,
etc, but it may be used to implement higher level protocols.

Summary of messages

152CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Debug

Element

Free

Get

Look

Mapping

Off

On

Put

Queue

Speed

Status

Value

Current implementation details

This describes some of how the object interfaces with the CAN hardware module on the
VM2's STM32F103 microcontroller. Other parts of the description are included where
they are relevant to the each message.

The CAN hardware module has three Tx mail boxes and two Rx FIFOs.

Currently we only use one Tx mail box to send outgoing messages.

Outgoing messages are put in a software queue by the Put message and are sent out when the
CAN Tx mail box is empty (this sometimes uses an interrupt service routine). This means there is
no prioritising of outgoing messages - they are sent in queue order only.

Currently we use just one Rx FIFO to receive incoming messages. All the messages filters are
directed to use FIFO 0. When an incoming message passes a filter and reaches the Rx FIFO an
interrupt service routine places it in a software queue, from where it is read using the Look and
Get messages. If the software queue overruns, a counter is incremented to indicate the overrun
and all the old messages in the queue are lost. The 'current' Rx CAN frame is cached so that an
overrun doesn't result in inconsistent frame data. See Debug(1) for more information.

Bus off management

In later versions of the driver (after 2019), the CAN hardware module is set up to automatically
handle 'Bus-off' conditions. In earlier versions this is not set. Please consult the device manual
and use the Value message to access the CAN module registers directly if you want to alter this
behaviour.

153 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Make <object> CANBus (Int bitrate, Int extended)
CANBus

Make creates a new CANBus object and carries out basic configuration.

Parameters

Bitrate is an integer that represents the bit rate required on the CAN bus in bits per second.
Not every bit rate is selectable. The values that are available are discussed more fully in Speed.

Extended is an optional parameter that sets the default CAN frame type: 0: standard 11-bit
identifiers, 1: extended 29-bit identifiers.

Mode

Immediately after Make the device is left in INIT mode. This means the device is off the bus and
you can perform further set up operations. To go to another mode use On.

Initial filter set up

To simplify initial testing a single filter is set up by Make that accepts all incoming messages. See
Mapping to change this.

Examples

Make can CANBus(1E6 As Int) ; CAN bus at 1MHz, not extended IDs

Make can CANBus(125E3 As Int, 1) ; CAN bus at 125KHz, extended IDs

Debug

Debug
Debug(Int) Int

Debug allows you to set and read some of the debug features of the CAN hardware and
CANBus object.

Currently there are only a couple of options.

Debug by itself

Debug by itself returns some printout of the values of some of the internal registers and other
state.

Print can.Debug

154CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

Debug(0)

The active variable Debug(0) sets and reads the Loop back mode, and Silent mode of the
CAN hardware module as a bit pattern.

Bit 0: Loop back mode on / off

Bit 1: Silent mode on / off

Example:

can.Debug(0) := %01 ; set loopback mode to test the CAN system.
can.Debug(0) := %10 ; set silent mode to sniff the CAN system.

Silent mode allows the CAN controller to monitor the CAN Bus without putting any signal on to
the bus.

Loop back mode allows the CAN controller to receive all frames it sends out, but none of the
frames from the external CAN bus.

If both silent and loop back modes are selected together than the system can do a 'hot self test',
where loop back won't send any signal to the external CAN bus.

To set these modes the CAN module must be in INIT mode, and then put in normal
mode before sending CAN test frames. See Off and On.

Debug(1)

The active variable Debug(1) sets and reads the 'Rx buffer overrun count'. This is a counter
that keeps track of the number of times the CANBus receive buffer overruns.

An overrun condition happens when frames are being written to the Rx buffer faster than they
are being read out using Get, eventually newer frames start to write over the oldest frames in the
circular buffer.

Example:

If can.Debug(1) ... ; Has the buffer overrun?
 can.Debug(1) := 0 ; reset the counter.

Element

Element(Int Offset, Int nBytes) Int

The Element message allows you to read single-byte or multi-byte values out of a CAN frame's
data segment.

The parameter offset is the offset in bytes to the start of the value within the CAN frame's data
segment, and nBytes is the size of the item you want to read: 1, 2 or 4 bytes .

155 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If the value you want to read out of the packet is in the little endian format then use a negative
value for nBytes.

As elsewhere in Venom, the Element keyword can be omitted, simply using can.(0), for
example.

Examples:

print can.Element(0, 1), can.Element(1, 1)
print can.Element(0, 2)
print can.(0, -2)
print can.(1, 2)
print can.(1, -2)
print can.(2, 4)

Get, Queue, Look

Free

Free Int

The Free message reports the number of free frame spaces in the output frame buffer

 The output frame buffer can hold 16 frames before it it is full. If the output buffer becomes full
then Put will wait for space to appear in the buffer.

 Put

Get

Get

The Get message discards the current frame at the front of the frame input buffer. This is usually
done after reading the frame contents with Look.

Queue, Look

156CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

Look

Look(Int) Int

The look message is used to look at the first (oldest) frame in the frame input buffer. To discard
the current frame and move to the next frame, use the Get message.

Look takes a single parameter and uses that as an index to access different parts of the frame.

can.Look(0) ; Frame ID
can.Look(1) ; Frame data length (0-8)
can.Look(2) ; Extended frame? (True or False)
can.Look(3) ; Memory address of the current CAN frame data bytes.

You can also use Look with no parameters:

can.Look ; Frame ID

Accessing the data bytes

You can use the Element message to read data bytes from the frame.

Older functionality

The following are superseded by Element, but are included for reference:

can.Look(4) ; First byte of CAN data
can.Look(5) ; Second byte of CAN data.
… and so on to
can.Look (11); – last byte of CAN data (if there are that many).

Reading past the end of the data yields undefined values.

Get, Queue, Element

Mapping

Mapping (Int filt_num, Int mode, Int scale, Int A ,
Int B)

The Mapping message sets the CAN message receive filters.

When you first create a CANBus object, a single filter (in filter 0) is set up to accept all incoming
messages. Effectively, the following code has been called:

can.Mapping(0, 0, 1, 0, 0)
If you want to restrict incoming messages then you will need to overwrite filter zero, or reset all
the filters and start again - see below.

There are 14 filter banks in the hardware module, selected using the filt_num parameter

157 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

(numbered 0-13).

Each filter bank can be programmed into one of four configurations using the mode and scale
parameters. The four configurations are listed in the table:

Number of
filters per
bank

Type(s) of filter(s) in each
bank

Mode parameter
value

Scale parameter value

1 A 32-bit identifier and a 32-
bit mask

0 (mask mode) 1 (32-bit)

2 Two exact 32-bit identifiers 1 (ID mode) 1 (32-bit)

2 Two 16-bit identifiers and
two16-bit masks

0 (mask mode) 0 (Dual 16 bit)

4 Four exact 16-bit identifiers 1 (ID mode) 0 (Dual 16 bit)

Masks

When configured in mask mode, mask values are used to select which bits of an incoming frame
ID must match the filter ID value.

A 1 in the mask means match, and a 0 in the mask means don't care.

Scale

Each filter bank can operate in one of two 'scales': 32-bit or 16-bit.

When using 32-bit scale, the A and B parameters are both 32-bit values. A is the filter ID. B
is either a mask value or an additional filter ID, depending on the mode.

The bits are arranged inside each 32-bit word like this:

[29 ID bits][RTR][IDE][0]

Bits 3 and 2 are IDE and RTR respectively. Bit zero is not used.

When using 16-bit scale, the A and B parameters each hold two 16-bit values.

In mask mode, the most significant 16 bits of a word are the mask value, and the least significant
16 bits are the ID value.

In ID mode, both sets of 16 bits are IDs.

The bit assignment within the 16-bit values is more complex:

[11 ID bits][RTR][IDE][3 extended ID bits]

158CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

Example

The line below sets up filter zero in 'single 32-bit' scale and 'mask' mode to look for any identifier
with it's ID, RTR and IDE bits like this, where x is don't care:

00000001xxxxxxxxxxxxxxxxxxxxxxxx

can.Mapping(0,0,1,$10000000, $F0000000)

For more information on how the CAN hardware module works please see the
STM32F103C/D/E reference manual.

You can use all forms of the Mapping message in any mode - you don't have to set up INIT
mode first.

Reset all filters

Mapping

Using the Mapping message without any parameters resets all the filters to their inactive state.
No incoming frames will be seen until new filters are set up.

can.Mapping ; reset all the filters

Off

Off

Off will put the device into init mode. This is the same as Can.On(1).

Example

can.Off ; Go to init mode

On

On

On
On(Int)

On will put the device into normal mode where it may take part in normal CAN interactions on

159 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

the bus.

If a parameter is passed to On, then the operating mode is set to the value of the parameter:

Mode number Name Description

0 Normal mode The device is actively
connected to the CAN
network.

1 Init mode The device is in initialisation
mode. It must be in this mode
to set some of the internal
registers.

2 Sleep mode The device is in sleep mode.
This isn't well supported in the
software as yet.

3 and above Undefined - do not use

Example

can.On ; Go to normal mode

Off

Put

Put(Int ID, Int Addr, Int Nbytes [, Int Ext])

The Put message is used to construct and send CAN frames. The outgoing frames are put in the
output queue. If there is no room in the queue then Put will wait.

Parameters

ID is the ID field of CAN frame.

Addr is usually the memory address of some data within an array (see Array Address).

Nbytes is the number of bytes to read from the address and send out in the CAN frame. The
CAN specification allows between 0 and 8 bytes of data per frame.

The frames are queued in FIFO order and are sent out using just one of the device’s transmit
mailboxes. There is no prioritising of messages.

The optional Ext parameter allows the standard or extended state, set during the Make of the
CANBus object, to be over-ridden on a per-frame basis when required. Non-zero values
indicate an extended address.

160CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

For example:

can.Put (%11110101001, my_array.Address, 8) ; Send 8 bytes of data from an array.

Queue

Queue Int

The Queue message reports the number of frames waiting to be read in the input frame buffer.

For example:

Await can.Queue ; wait for a message to come in.
id := can.Look(0)
data := can.Look(4)
can.Get ; we're done with this message.

 The input frame buffer can hold 32 frames before it overflows. If it overflows, the receiving
process just carries on writing to the circular buffer. This will mean the queue will transition from
32 to 0, whereupon all frames in the queue are lost. The receive process then carries on
normally.

 Get

Speed

Speed Int

Baud allows the bus bit rate to be set to a value in Hz.

Not every value is settable. These are the values you can use:

If the main CPU clock speed is system.Speed (usually 72MHz) then CANBus.Speed
can take the values

system.Speed / 24 / N
Where N is an integer: 1, 2, 3, 4, etc, up to 512.

Typical values for the CAN bit rate are 1MHz, 500KHz, 250KHz and125KHz.

The equivalent values of Speed are 1000000, 500000, 250000 125000. These can also be
expressed like this:

1E6 As Int, etc.

161 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Examples

can.Speed := 125E3 As Int; set speed to 125KHz.

To perform this operation the CAN module must be in INIT mode. See Off.

Timing configuration

The sub-bit-timing configuration used by the CANBus object is fixed.

(Though you can change it by accessing the CAN hardware modules registers directly if
necessary)

Generally it aims to use 12 Tq per Bit Time, and set the sample point at 75% (i.e. after 9 Tq).

This is assigned like so:

SynchSeg: 1 Tq
PhaseSeg1: 8 Tq
PhaseSeg2: 3 Tq

The synchronisation jump width is set at 1 Tq.

Status

Status Int
Status(Int) Int

Status returns the error status of the device.

can.Status (0) ;Bus off status: non-zero if off the bus
can.Status (1) ;Error warning status: non-zero if warning is true
can.Status (2) ;Error passive status: non-zero if error passive is true
can.Status (3) ;Tx error count (0-511)
can.Status (4) ;Rx error count (0-255)
can.Status (5) ;Last error code (0-7)*
can.Status (6) ;Raw error register contents*

If the parameter is omitted it defaults to zero:

can.Status ;Bus off status: non-zero if off the bus

*Please refer to the STM32F103 reference manual for the meanings of these bit patterns.

162CANBus

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value (Int) Int

Value allows direct access to the CAN module's register contents.

Examples:

can.Value (offset) := X ; set register at offset with value X
X := can.Value (offset) ; read register at offset.

For the register offset values you should refer to the bxCAN module in the STM32F103
hardware reference manual.

To perform some of these operations the CAN module must be in INIT mode. See Off.

Class-default

All user-defined classes recognise a set of 'Class-default' messages, as well as the members and
methods that you define.

You can override any of these Class-default messages with methods or members of your own,
and these will take precedence when you send a message to your object.

However, if you wish to call a Class-default message explicitly you can specify this using special
syntax:

 <obj>.[Class]<msg>

Examples

x := new MyClass
Print x.[Class]Name, CR ; Debug: print the class name of x
...
To MyMethod
 Print This.[Class]Name, CR ; Debug: print the name of this class.
End

This section describes all the Class-default messages.

Summary of messages

163 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Die

Length

Name

Print

PrintF

Die

Die

The Class-default Die message removes the object from memory; it also passes on the Die
message to any members that have the AutoDestruct attribute.

To call the class-default message Die from within a method of the class, the recommended
pattern is:

Base.Die
If for debug purposes you want to know you are calling the Class-default message, use

This[Class]Die

Length

Length Int

The Class-default Length message returns the number of bytes needed to hold a binary record
representation of the object.

(Objects created with Class can be used as data templates to process binary or text format
records in files and other storage media).

When a class contains no Strings or Arrays then every instance of the Class has the same length.
If a class contains one or more Strings or Arrays then the length will vary depending on the
actual lengths of the Strings or Arrays in the particular object.

If the Array members are defined as New then they will always have the same length in every
instance.

164Class-default

Copyright © 2009-2021 Venom Control Systems Ltd

Name

Name String

Name returns the name of the object's Class name.

Example

Class Test
End

Make t New Test
Print t.Name

Prints:

Test

Print

Print <object>
Print <object> : ","
Print
Print(",")

The Print message is sent internally (by the system) to any object when you Print it. Any colon
formatting values you supply are sent as parameters to the Print message. You can also send the
Print message directly - see below.

The Class-default Print message will print the user-class object in a different format depending
on the formatting parameters you supply.

If no formatting parameters are supplied then a default 'debugging' style is used. This lists the
class's name and memory address, followed by each member's name and value, eg:

-->Print p
Person (at $64000c64)
 Name = Fred
 Age = 35

However, if a colon formatting parameter of type String is supplied then the object is printed
in one of several text formats.

If the string contains "INI" (case sensitive!) then the object is printed in 'INI file' format:

-->Print p:"INI"
Name="Fred"
Age=35

Otherwise a comma separated value (CSV) format is used; the first character of the string is

165 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

used as the separator character:

-->Print p:","
"Fred",35

To read data in CSV and INI file format you can use File.Get.

When can you send the Print message directly?

You can send the Print message directly to an object, but it will only work when there has
already been a print job set up. A print job is 'claimed' when a Print statement starts, and
'released' when the Print statement ends, after printing all the items in the print list to the print
job.

So you can send a Print message from inside any code called by a Print statement - e.g.
a Print method.

However, if you call a Print message from outside a Print statement you may get a
runtime error: No print job.

PrintF

PrintF(<String> format, [Any ...])

PrintF for user-defined Classes works in the same way as for any Venom object that can
accept print. See here.

However, if your Class is to accept print it must define an AcceptPrintJob method. (It is
not usually useful to override the Class-default PrintF message).

The AcceptPrintJob method should take exactly one parameter - which is a PrintJob object
containing the text to be printed.

PrintJob objects are only ever seen in the context of an AcceptPrintJob method, so most of the
time you won't need to know about them.

Example

Class Label
 XPos Int
 YPos Int
 Text New String(100)

 To AcceptPrintJob(pj)
 If pj.Status And 1
 Text.Empty
 Text.AcceptPrintJob(pj)
 End

End

166Class-default

Copyright © 2009-2021 Venom Control Systems Ltd

-->l := New Label
-->Print To l, "This is some text"

See also PrintJob

CRCGenerator

This object is a wrapper for two different CRC generators:

A 16 bit generator using the standard CRC-CCITT polynomial and initializer

A commonly used 32 bit CRC generator

A 16 bit CRC generator compatible with MODBUS CRC

A CRC (Cyclic Redundancy Check) is a number computed from a block of data such as a
stream of text or the contents of a buffer or array, in such a way that any change in the content of
the data is likely to change the value of the CRC. This has applications in checking data for
corruption when transmitted through an error prone medium. The computation is done is such a
way that most forms of simple data corruption (small numbers of incorrect bits, missing bytes
etc) are very likely to change the CRC value and thus be detected.

The CRCGenerator is from time to time enhanced to include specific CRC algorithms for other
industry standard communications protocols. These could be coded in Venom, but a version
implemented through the CRCGenerator object would be much faster.

Summary of messages

Make

Get

Put

Reset

Value

Creation

Make <object> CRCGenerator (Int type) CRCGenerator

Creates a CRCGenerator of the indicated type.

type is:

16 16 bit generator using CCITT-CRC16
32 32 bit generator
'M' MODBUS CRC - another 16 bit CRC using a different algorithm.

167 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

8 simple sum truncated to 8 bits
'S' simple sum truncated to 16 bits

The 8 and 'S' options offer a speed improvement over performing the same simple
calculation in Venom code.

Get

Get Int
Get(buf, array or string data) Int

If a string, buffer or array is supplied as a parameter, the CRC of its contents are calculated and
returned.

The element type of the buffer or array must be text or 8 bit.

With no parameter, the CRC resulting from data in previous crc.Put messages is returned.

Put

Put(Int byte)

byte is an integer value used to update the current CRC. Only the lowest 8 bits of the parameter
are used.

crc.Put(data[, Int start, Int length]

data An array, buffer or string.

Array element type must be 8 bit.

Buffer element type must be 8 bit or text

start (default 0) 1st element to process

length (default all) number of elements to process

All or the selected part of the data is entered into the CRC calculation.

This message can be repeated to build up a CRC over selected fields of a block of data.

168CRCGenerator

Copyright © 2009-2021 Venom Control Systems Ltd

Reset

Reset

Sets the generator to its initial state, the same as after Make.

Value

Value

Value is a synonym for Get.

DateTime

DateTime objects may be used to convert between the date and time in the familiar calendar
form, and an integer value of time in seconds. This ‘absolute seconds’ value may be used for
calculations involving real dates and times.

 RealTimeClock

Summary of messages

Make

Day

DayOfWeek

Hour

Minute

Month

Adjust

Second

Time

Update

Valid

Year

Print To

Print

169 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Make <object> DateTime[(Int seconds)]

A DateTime object is created with its time set to the optional value supplied.

If no value is supplied the time is set to 0.

For example:

Make dt DateTime
Make dt DateTime(clock.Time) ; Set the time to 'now'.

Each DateTime takes a block of ~34 bytes from the heap.

See also RealTimeClock

Adjust

Adjust(Int part , Int increment)

Adjust allows you to implement ‘digital watch’ style methods to change the date in a DateTime
or RealTimeClock object.

Every time Adjust is called it will increment or decrement a single part of the date or time, rolling
over if the maximum or minimum value for that field is exceeded.

The part of the date (Day, Month, Year, Hour, Minute, Second) is specified by an integer
parameter, or by a character constant (which is also an integer, actually).

Part of date Number Letter

Day – ranging 1-31 6 ‘d’

Day – only correct date range 0 ‘D’

Month 1 ‘M’

Year 2 ‘Y’

Hour 3 ‘h’

Minute 4 ‘m’

Second 5 ‘s’

All other values are ignored.

For example

Date . Adjust(0,1)

170DateTime

Copyright © 2009-2021 Venom Control Systems Ltd

Date . Adjust(’D’,1)
are the same – increment the day.

To decrement a part of the date, use an increment of ‘-1’.

If you use values of the increment larger than 1, then this value will be added or subtracted from
the date element. However if the value rolls over, it will roll over to the exact maximum or
minimum value for that part of the date.

Coping with leap years with Adjust

There are two main ways of dealing with Feb 29th when entering dates.

The first (the simplest to program) is to let the DateTime object deal with it. You just write code
to Adjust the DateTime, and print out the result. The down side to this approach is that you

won’t be able to enter invalid dates that you intend to correct later. Also if you enter, say 29th

Feb 2008 (a leap year), and then increment the year, the DateTime object will print the new date

as 1st March 2009.

The second method is to tell Adjust to allow invalid dates, and to make sure the date is valid
after entry is complete.

To do this you will have to print out the date elements of the DateTime object individually, or use
the special format option that allows printing of invalid dates.

Use the Valid message to check if the date is OK after entry is complete.

The following procedure demonstrates both methods using characters from the serial port to
Adjust a date. To use the procedure, run it and then enter any of the following characters to
change the date: D, d, M, Y, h, m, s. Use the + or – characters to set increment or decrementing
of the date.

To use the legal-dates-only method, never type a lower case ‘d’, and use the first printing
option. Leave both Print statements in to compare methods.

To date_entry
 Local increment := 1
 Local date := New DateTime
 Forever
 [
 char := serial.Get
 Select Case char
 Case '-'
 increment := -1
 Case '+','='
 increment := 1
 Case 13 ;Escape on seeing Carriage Return.
 [
 If date.Valid
 Break
 Print "Bad date - keep trying",cr

171 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

]
 Case Else
 [
 date.Adjust(char,increment) ;Increment the date.
 ; Use this Print if you don't
 ; allow invalid dates to be entered.
 Print date:0," "
 ; -Or- this if you do.
 Print date:0:1
 Print CR
]
]
End

See also Valid, Print, Update

Day

Day Int

The Day active variable holds the ‘day of the month’ number for the DateTime object, counting
from 1.

Day may be set to values too large for the particular month. It will be wrapped around to a real
date if Update is called.

When printing a DateTime object, you can choose whether to print the date as you have entered
it, or a guaranteed-real date. See Printing and Update.

Day can hold from 1 to 31.

DayOfWeek

DayOfWeek Int

DayOfWeek returns the day of the week, in days since Sunday. It cannot be set because it is
dependent on the date. The day numbers are as follows:

Sunday 0

Monday 1

Tuesday 2

Wednesday 3

Thursday 4

172DateTime

Copyright © 2009-2021 Venom Control Systems Ltd

Friday 5

Saturday 6

Hour

Hour Int

The Hour active variable holds the hours value of the DateTime object.

Hour can hold 0 to 23.

Minute

Minute Int

The Minute active variable holds the minutes value of the DateTime object.

Minute can hold 0 to 59.

Month

Month Int

The Month active variable holds the month-number of the DateTime object, counting from 1.

Month can hold from 1 to 12.

Second

Second Int

The Second active variable holds the seconds value of the DateTime object. This is the number
of seconds in the time and date representation, not the ‘absolute seconds’ value, which is given
by Time.

Second can hold 0 to 59.

173 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Time

Time Int

The Time active variable holds the ‘absolute seconds’, the number of seconds since the datum:
00:00 on 1st January 1990.

The following example shows a DateTime being created and set to the current time from the
RealTimeClock:

Make now DateTime
now.Time := clock.Time

Time can hold values representing the year 2089 and beyond. Currently other elements
of the DateTime object make it unwise to use dates beyond 2089.

See also RealTimeClock.Time.

Update

Update

The Update message is for dealing with possible invalid dates. You can put invalid dates (such
as 30 Feb 2009) into the Day, Month and Year values of a DateTime. However if you read
Time then of course you will always get a value that represents a valid date. However, the Day
and Month values will not have been updated to corrected values. Updating Day and Month
only occurs when either Time is set, or Update is used, or during printing. The following two
lines are equivalent and will fix invalid dates:

Now . Update
Now . Time := Now.Time

See also Valid, Print

Valid

Valid Int

Valid returns True if the DateTime contains a real date, i.e. not one like 30th Feb.

See also Update, Print

Year

Year Int

The Year active variable holds the years value of the DateTime object.

174DateTime

Copyright © 2009-2021 Venom Control Systems Ltd

-->Make big_year DateTime
-->big_year.Year := 2002
-->Print big_year.Year
 2002

Year can hold from 1990 to 2089

Accepting Print

Print To <DateTime> , <print list>

Printing to a DateTime sets the time and date. It follows the same rules as for printing the time to
the RealTimeClock object.

For example:

Print To dt,"2010-06-15 10:56:00"

 Note: you can also print to an object by sending it the PrintF message.

Print

Print <DateTime>

Printing a DateTime object prints the date and/or time held by the object. It is printed in ISO
format by default, but you can also specify the format in which the elements of the date and time
are printed.

ISO date time format is the date: a four-digit year followed by a two-digit month and day,
separated by dashes, and then the time: hours, minutes and seconds separated by colons. For
example:

Print dt
2012-04-06 12:05:33

Custom date and time formats

You can specify the printout of any date or time using a format specifier. The most versatile
format specifier is a format string that uses special codes to encode the elements of the date or
time you wish to print. The Venom syntax for printing with format specifiers is

Print <DateTime> : format_string

For example:

Print dt:"ddMMM'yy"
06Apr'12

175 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The list of date and time formatting codes appears in the table below.

Code Meaning

aa am or pm

d Day number 0-31

dd Day number 00-31

ddd Day, abbreviated name

dddd Day, full name

h Hour 1-12

hh Hour 01-12

H Hour 0-23

HH Hour 00-23

m Minute 0-59

mm Minute 00-59

M Month 1-12

MM Month 01-12

MMM Month, abbreviated name

MMMM Month, full name

o Day ordinal suffix: two characters placed after the day number as in: 1st,
2nd, 3rd, 4th, etc.

s Seconds 0-59

ss Seconds 00-59

y or yy Year 00-99

yyyy Year as 4-digit number

<text> Embed literal text between < and >

\ The next character is literal. In practice this is only needed to enter literal
< characters. Note that two \\ are needed in a quoted string to enter a
single \. E.g, use "\\<" to output a < character

Any other characters in the format string will appear in the output without conversion.

For example:

176DateTime

Copyright © 2009-2021 Venom Control Systems Ltd

Make dt DateTime
Print To dt, "2012-04-11 13:05:08"
Print dt : "yyyy-MMM-dd (ddd) <Time:> HH:mm:ss", CR
2012-Apr-11 (Wed) Time: 13:05:08

An example illustrating the use of \:

Print dt:"\\<MMMM>", CR
<April>

Note the closing > didn't need to be escaped-out because it is only a treated as special
character after an opening <.

Printing invalid dates

Print <DateTime> : format_string : f2

If a second format specifier of value 1 is used, then the date is printed in the same style, but
instead of a fully validated date being printed, the contents of the date and time registers are
printed as they are. This can often be useful when entering dates via a user interface that adjusts
the month and the day of the month independently.

 Valid, Update

Locale

It is possible to change the day and month names, and ordinal suffixes to suit different locales.
See here for more information.

See also printing RealTimeClock.

Old style formatting

There is another way to format dates and times which involves picking one of a set of fixed
formats from a list given a format number.

The syntax is

Print <DateTime> : fn

Or you can use the following if you want to print invalid dates:

Print <DateTime> : fn : 1

The following examples all represent 1:50pm on 12 January 2011.

f Description Layout Example

177 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

:0 ISO Date and time YYYY-MM-DD HH:
MM:SS

2011-01-12 13:50:00

:1 ISO Date and time, no
seconds

YYYY-MM-DD HH:
MM

2011-01-12 13:50

:2 ISO Date YYYY-MM-DD 2011-01-12

:3 ISO Time HH:MM:SS 13:50:00

:4 Hours(12), Mins, Secs,
am/pm

HH:MM:SSxx 01:50:00pm

:5 Day, Month, Year DD-MM-YY 12-01-11

:6 Month, Day, Year MM-DD-YY 01-12-11

:7 Day of the week ddd Mon

:8 Month mmm Jan

:9

:10 Day, Month, Year, H(24),
M, S

DD-mmm-YY HH:MM:
SS

12-Jan-11 13:50:00

:11 Day, Month, Year, H(24),
M

DD mmm YY HH:MM 12-Jan-11 13:50

:12 Day, Month, Year DD-mmm-YY 12-Jan-11

Digital

The Digital object controls both individual digital channels, and groups of channels. The output
state maybe set and/or the input state read. Several different digital I/O devices are supported.

The input state is generally read using the Asserted message.

The output state is generally set using On and Off, or by setting Asserted.

Summary of messages

178Digital

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Asserted

High

Low

Off

On

Pulse

Toggle

Value

Print

Creation

Digital objects may be created to drive the controller's on-board I/O ports, or PCF8574 ICs
attached to the I2C Bus.

On-board digitals

I2CBus digitals

On-board

Make obj Digital(Int channel [,Int Attributes])

Make can take two parameters - the channel number and an optional 'attribute' code.

Each I/O channel on the VM2 is identified by a hexadecimal number - hence the $ signs in the
example code. See the VM2 datasheet for details of each channel.

Attributes are explained below, however the code for the most simple Digital objects are given
here:

Make d digital($14) ; Dig input on channel $14
Make d digital($11,1) ; Dig output on channel $11

Attributes

The Attributes parameter defines whether the channel is an input or an output, active high or

179 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

active low.

The VM2 has internal pull-up or pull-down resistors that can be used with inputs, and can
operate in push-pull or open drain output mode. These modes are controlled by the attribute
parameter too.

The default value for Attributes is 0 - which is an active low input, pulled high internally. This
is the most commonly required type of digital input.

To create one of these you can omit the attributes parameter:

Make d digital($14) ;Dig input on channel $14, pulled high, active low.

And the most commonly required type of digital output is defined like this:

Make d digital($14,1) ; Dig out, push-pull, active low.
For the less commonly required input or output attributes you have to set binary bits within the
attributes parameter.

Note that all inputs have even attributes, and all output attributes are odd.

Attributes are fixed

These attributes can't be changed once the object is created. If you need to change a physical
pin from one type to another, then you should re-create the object. This doesn't take very long.

Make d digital($14,1) ;Output
... and later ...

Make d digital($14) ;Input

Input attributes

For an input, the attribute bits are these:

Bit 2 Bit 1 Bit 0

When 1 Floating Active High 0
When 0 Pulled (to inactive state) Active Low

So to create a digital input that is floating and active high you can use either of these two:

Make d digital($14,6)
Make d digital($14,%110) ;Using Binary notation is useful.

Output attributes

For an output, the attribute bits are these:

Bit 2 Bit 1 Bit 0

When 1 Open Drain Active High 1
When 0 Push-Pull Active Low

180Digital

Copyright © 2009-2021 Venom Control Systems Ltd

So to create a digital output that is open-drain and active low you can use either of these two:

Make d digital($14,5)
Make d digital($14,%101) ;Using Binary notation is useful.

Output edge speed attributes

You can also set the 'speed' of the digital outputs by setting bits 3 & 4 of the attribute parameter.
This speed governs the rate of change of output voltage when the output changes state, and is
given in terms of the maximum frequency theoretically possible on the output.

Bit 4 Bit 3 'Speed'

0 0 2 Mhz

0 1 10 MHz

1 0 50 MHz

1 1 Reserved

Make d digital($14,%10011) ;Dig out 50MHz, push-pull, active high.

Some useful Attribute constants

#Define IN_AL_PH %000 ; Input active low, pulled high.
#Define IN_AH_PL %010 ; Input active high, pulled low.
#Define IN_AL_FL %100 ; Input active low,floating.
#Define IN_AH_FL %110 ; Input active high,floating.

#Define OUT_AL_PP %001 ; Output active low, push-pull.
#Define OUT_AH_PP %011 ; Output active high, push-pull.
#Define OUT_AL_OD %101 ; Output active low, open drain.
#Define OUT_AH_OD %111 ; Output active high, open drain (not likely to be used).

Digital is a Zero-Memory object

I2C Bus

Make <object> Digital(Int channel)

Make normally takes just one parameter - the channel number. Channel numbers are listed in the
datasheet for an I/O card, or in this table.

For example

Make relay Digital(128)

181 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

It is possible to make multi-bit digital objects on the I2C Bus by specifying the start and end
channels in the multi-bit port. These must both be located within the same group of 8 digital I/O
pins.

For example

Make relay Digital(128, 130) ; 3-bit wide digital I/O port.

Digital is a Zero-Memory object

PCF8574 Channel table

Channels on PCF8574 ICs on the I2C Buses are detailed in the table below:

I2C Device Address
inputs:

A2 A1 A0

Channel
Numbers
I2C Bus 1

Channel
Numbers
I2C Bus 2

PCF8574 000 128 - 135 384 - 391

PCF8574 001 136 - 143 392 - 399

PCF8574 010 144 - 151 400 - 407

PCF8574 011 152 - 159 408 - 415

PCF8574 100 160 - 167 416 - 423

PCF8574 101 168 - 175 424 - 431

PCF8574 110 176 - 183 432 - 439

PCF8574 111 184 - 191 440 - 447

PCF8574A 000 192 - 199 448 - 455

PCF8574A 001 200 - 207 456 - 463

PCF8574A 010 208 - 215 464 - 471

PCF8574A 011 216 - 223 472 - 479

PCF8574A 100 224 - 231 480 - 487

PCF8574A 101 232 - 239 488 - 495

182Digital

Copyright © 2009-2021 Venom Control Systems Ltd

PCF8574A 110 240 - 247 496 - 503

PCF8574A 111 248 - 255 504 - 511

Formula for channel number of a digital on a PCF8574 on an I2C Bus:

Bus * 256 - 128 + Address * 8 + PCF8574A * 64 + PCF8574_Pn

Where:

Bus is the I2C Bus number (1 or 2)

Address is the binary value of the address bits on the IC (A0 + 2*A1 + 4*A2)

PCF8574A is 1 if the IC is an ‘A’ suffix, else 0.

PCF8574_Pn the port number on the IC, 0 - 7.

Reading the input value of a device that is not present

Note: if digital channels are assigned to a PCF8574 device that is not present on the I2C Bus,
then the Make will not give an error, but reading the input value of the channels will yield 1 or
‘not asserted’ because the default state of the bus is pulled high.

Asserted

Asserted Flag

Asserted is used to read digital inputs and outputs, and also to set digital outputs.

When it is read, Asserted returns True or False depending on whether the channel is On or Off,
respectively. Whether the channel is an input or an output, Asserted returns the state of the
channel as if it were an input – i.e. it reads the actual voltage level rather than ‘what it ought to
be’.

An output is turned on when Asserted is set to True (or any non-zero integer) and off when
Asserted is set to False.

Asserted sent to a pulled input will make it pull to the state given.

Example:

To thermostat
 Make heater digital(32)
 Every 1000
 heater.Asserted := temperature < 50
End

183 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

See also On, Off, High, Low

You can set whether the input or output is active high or active low.

High

High

High sets a digital output to its high voltage state - as seen at the output of the VM2 or
PCF8574.

See also On, Off, Low, Asserted

Low

Low

Low sets a digital output to its low voltage state - as seen at the output of the VM2 or
PCF8574.

See also On, Off, High, Asserted

Off

Off

Off sets a digital output to its inactive state.

See also On, High, Low, Asserted

You can set digital I/O to be active high or active low.

On

On

On sets a digital output to its active state.

See also Off, High, Low, Asserted

184Digital

Copyright © 2009-2021 Venom Control Systems Ltd

Pulse

Pulse

Pulse momentarily pulses an output to the opposite state.

d.Pulse

The pulse width is guaranteed to be longer than 300nS, but could be considerably
longer than this, depending on how long it takes to write to the digital port.

Toggle

Toggle

Toggle inverts the state of the output. It does not work for inputs.

d.Toggle ; invert the state of 'd'

It is very useful on the command line to show that an output is working:

-->Make d digital($7F, 1)
-->Every 100 d.toggle

Value

Value Int

Value is used to read and write multi-bit digital inputs and outputs (currently only available on
I2C based Digital objects).

Any '1' in the binary representation of the value is equivalent to a high logic level on the I/O pin,
and vice versa for '0' bits.

Example:

Make port Digital(128, 135) ; Make a multi-bit digital port.
...
port.Value := %10011000 ; Set the bits of the port

See also Make multi-bit port

185 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Printing

Print <Digital> :f1

If no format specifier is used, the state of the channel or port (as defined in Asserted) as "ON "or
"OFF", always with 3 characters is printed

-->Make d Digital(128)
-->Print d
OFF
-->d.On
-->Print d
ON

If a format specifier greater than zero is supplied, then the object is printed as a 1 or a 0
depending on whether it is high or low. This is independent of the active high or active low
attribute.

-->Print d:3
[Digital: 0]

See also Asserted

Encrypter

The Encrypter Object

The Encrypter object can be connected to any Venom object that accepts Put, Get and
Queue messages, or used as a standalone keystream generator.

Data passed though it is encrypted using the RC4 cipher. Passing encrypted data though the
identical process with the same starting point (key) decrypts the data.

It is impossible to decrypt the data without knowing the key value used to encrypt it. The
encrypter can thus be used to protect data from readability in files or in transit via communication
media such as serial ports or TCP connections.

Security and Efficiency

The RC4 cipher is fast and takes up very little memory. As with all good encryption schemes the
algorithm is well known and documented. Encryption of any message or file is dependent only on
a secret key known to authorised users of the encrypted data, and on the difficulty of recovering
the key even when samples of known plaintext and its encrypted version are known.

RC4 is a widely used cipher (is is still the most commonly used for secure web communications,
for example) and is secure as long as it is used properly.

It does have a weakness in the key generation process: some information about the first few
bytes of the key can be obtained if the plaintext and encrypted data are both known. In repeated

186Encrypter

Copyright © 2009-2021 Venom Control Systems Ltd

sessions or messages using the same key or keys with similar first few bytes it is quite easy, given
enough known plaintext and cipher text, to work out the key. The WEP ("Wired Equivalent
Privacy") encryption used in earlier wireless LANs suffers from this vulnerability, but the problem
can be avoided in two ways:

1. By running the encryption process initially on blank data for a fixed and agreed number of
bytes (256 is better than none, 768 and 1024 are commonly used figures). This is called
RC4-dropN where N is the number of bytes discarded. This can easily be done in Venom
by connecting the encrypter to a nil object initially and getting and discarding the required
number of bytes before using on real data.

2. By changing keys frequently, and in a way that shows no correlation between one key and the
next. WEP was easily broken because it concatenated a shared secret key with a 24 bit
counter which incremented for each packet sent. Key retrieval was easy because only a small
part of the key ever changed. The Venom Encrypter object provides a simple method for
combining a fixed secret with a changing value (such as a counter or time/date information)
and using a 256 bit SHA-2 hash generator to produce a 256 bit key in which each bit has a
50% probability of changing even if there is only a single bit change in one of the supplied
values.

Message Summary

MAKE

Connect

Get

Key

Put

Accepting Print

Creation

MAKE <Encrypter> Encrypter([Any object])

The object parameter is any Venom object which can accept either the Put message, or
the Get and Queue messages.

This creates an encryption layer which will either accept data to send to the object, or receive
data from the object.

Example:

Make Enc Encrypter(serial)

187 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If you are going to use the encrypter with an object that does not exist yet by using the Connect
message later (e.g. a file that is not yet open), you can supply nil as the object when creating
the encrypter. This is the default if no object parameter is specified.

An encrypter object created with nil or with no parameter can also be used to provide a key
stream that is applied to any data by using the exclusive-OR (Venom EOR operator) on
successive bytes of the data with byte values obtained with successive Get messages to the
encrypter. This method might be easier for encrypting an array of byte values in place, for
example.

A nil encrypter could also be used as a source of random byte values for any other purpose,
and is faster than RandomNumberGen if only 8 bit values are required.

Connect

Connect(Any object)

This connects the encrypter to a new object, replacing that specified (if any) when the encrypter
was created.

Note that if the object is a file, it should be always be of 8 bit integer type. When text is
encrypted, the encrypted form is not suitable for storing in a text file.

Get

Get Int

Get one decrypted/encrypted byte from the connected object by processing the returned value
from a Get message to the object.

Returned value is an integer in the range 0 - 255.

Usually Get will be used for decrypting data e.g. read from an encrypted file or received on a
serial port or TCP stream.

If the encrypter was created with nil or no parameter, the behaviour is as if it were encrypting
an endless source of 0 values, and can be used for encrypting data by XOR-ing it with the data
one byte at a time, or as a source of pseudo-random byte values for any other purpose.

188Encrypter

Copyright © 2009-2021 Venom Control Systems Ltd

enc.Get(string s[, Int use_queue])

In this form, s is a string variable. Data is read and decrypted from the connected object and
replaces the string's previous contents. The decrypted data is expected to be text, and when a
newline character ("\n" or 10) is received or the maximum string length is reached, reading
stops. The newline character is not stored in the string.

use_queue should be specified and non-zero if the connected object is a buffer or file, or
any other where a Get message would result in a run time error when there is no more data
available. If use_queue is set, an end-of-input condition (Queue = 0) will be checked and
treated as if a newline had been encountered.

Key

Key(key1[, key2[, int iterations]])

Each key parameter can be:

A String variable or fixed string

A Buffer of text or 8 bit integers

An Array of 8 bit integers

If One Key Value is Supplied

The key value is used directly with the standard RC4 key scheduling algorithm. This is potentially
insecure, but it enables communication with third party users of RC4, whatever means is used to
generate or disseminate the key

If Two Keys are Specified

The two keys are combined using the 256 bit SHA-2 hash algorithm according to the following
key-strengthening scheme:

key = SHA256 (key1 . key2) (where ' . ' denotes concatenation)

Repeat <iterations> times:

 key = SHA256 (key . key1 . key2)

The resulting 32 byte (256 bit) key value is then used with the standard RC4 key scheduling
algorithm.

Default value for iterations is 1000.

189 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The reason for using two key values is for convenience when you need to combine a long-term
secret value with a once-per-session value to create a key for a file or message.

The reason for using the hash algorithm is to make sure that every bit of the resulting 256 bit key
is uncorrelated with any part of the supplied key values.

The reason for the repeated iterations is to waste time. The extra work involved makes it harder
for an attacker to find a key by brute force methods, since each guess needs the full number of
iterations to calculate the derived key. With keys of length 20 bytes each and 1000 iterations the
process takes 280 milliseconds on a VM2. An iterations value of 0 is valid and means the key
will be a simple SHA256 of the two keys, which will take around 380 microseconds for 2 keys
of 20 bytes each. This still gives a key value which is secure against the inherent key scheduling
weakness of RC4.

Examples

Very simple use:

f := fs.open("myfile.x", 8)
Make enc Encrypter(f)
enc.key("Venom Control Systems")

Combining a shared secret with a one-time value stored in the first 8 bytes of a file:

ARRAY secret(8, 16)
 12, 34, 56, 78, 11, 22, 33, 44,
 55, 66, 77, 88, 99, 123, 234, 200
END

f := fs.open("myfile.x", 8)
MAKE b buffer(8)
REPEAT 8 b.put(f.get) ; 1st 8 bytes = encryption seed
MAKE enc Encrypter(f)
enc.Key(secret, b)
x := enc.Get ; read remainder of file through decrypter

Put

Put(Int)

Encrypts the supplied byte value and sends it to the connected object with an Put message.

190Encrypter

Copyright © 2009-2021 Venom Control Systems Ltd

Queue

Queue Int

Sending a Queue message to an encrypter object returns the number of bytes/characters
available, based on the result of a Queue message sent to the connected object. In some cases
a Queue message directly to the connected object will not return the same value because the
encrypter may buffer some data internally. The encrypter's own Queue message will always
return the total number of bytes available.

Example

Printing an encrypted text file

f := fs.open("text.rc4", Int 8)
enc.connect(f)
enc.key(key1, key2)

; File was plain text encrypted; print the file contents
WHILE enc.Queue
 PRINT chr enc.get

Faster method using string get

; File was plain text encrypted; print the file contents
make s string(100)
WHILE enc.Queue
[
 enc.Get(s)
 printf("%s\n", s)
]

Accepting Print

PRINT to <Encrypter>, list

enc.printf(str, values)

Normal printing of text data to an Encrypter results in encrypted text being sent to the connected
object.

191 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Ethernet

The Ethernet object controls an Ethernet hardware interface. When VM2 Ethernet hardware is
connected to a LAN, with the aid of the Ethernet interface all packets for addresses on the LAN
or reachable via a gateway on the LAN will be routed though the Ethernet interface. All the IP
based protocols such as UDP and TCP and higher level protocols that use these will then work
over the Ethernet interface.

Any Ethernet device has an Ethernet address, commonly called a MAC (Media Access Control)
address which should be unique in the world for each device, to guarantee that devices on the
same network will all have individual addresses. The MAC address of each Ethernet interface
we supply is programmed in during production and taken from a unique address block originally
assigned to Micro-Robotics Ltd by the IEEE.

In IP networking, each device on a LAN will have an IP address too, which should be unique
within the LAN but part of a block of related addresses. Many networks use a mechanism
called DHCP (Dynamic Host Configuration Protocol) to assign IP addresses automatically and
Venom supports this; alternatively IP addresses can be set explicitly in code.

The Ethernet object automatically handles the ARP (Address Resolution Protocol) to match IP
and MAC addresses for devices on its network.

See also TCP/IP Networking

Summary of messages

Make

Address

Connect

Count

Debug

ErrorAction

Off

On

Status

Valid

Time

Print

Creation

Make <object> Ethernet

This is all that is needed for many systems. It assumes the standard VM2 Ethernet circuit is
connected, and a network with a DHCP server which will allow automatic allocation of the

192Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

Ethernet interface's IP addresses and assignment of a local name server and default gateway if
needed and available.

Make <object> Ethernet([Int select [, address [, DNS [
, DGW]]]])

This form allows for custom hardware and also enabled IP addresses to be specified explicitly.

Param Default Description

select 12 A bitmapped combination of values to select hardware addressing.
Bits 0 and 1 are an SPI address (default 00)
Bit 2 is 1 if addressing is to be used (default 1)
Bit 3 is 1 for SPI2, 0 for SPI 1 (default 1 for SPI2)
Bit 7 is 1 to use I2C bus 2, 0 to use I2C bus 1 (default 0 = bus 1)
The I2C bus is used to address an EEPROM in which the Ethernet
interface's MAC address and other data are stored.
If select is not present, or set to nil or 0, the default setting is used.

address use

DHCP

A non-zero integer or string that represents a valid IP address sets the IP
address of the interface explicitly.
If this parameter is not present, nil or 0, DHCP is used to set the
IP, DNS and default gateway addresses
A string that does not represent a valid IP address is used for a host name
or client ID in a DHCP request

DNS 0 or set
by

DHCP

If Parameter 2 specifies the IP address of the Ethernet interface, this
parameter can optionally specify the IP address of a name server for DNS
lookups.

DGW 0 or set
by

DHCP

If Parameter 2 specifies the IP address of the Ethernet interface, this
parameter can optionally specify the IP address of a default gateway to
locations outside the LAN.

Examples

Make eth Ethernet ; Default hardware, get IP address from a DHCP server
Make eth Ethernet(12); Explicit hardware, get IP address from a DHCP server
Make eth Ethernet(Nil, "192.168.1.54"); Default hardware, explicit IP address

The last example might be used on an isolated LAN, where there is no name server (DNS) or
default gateway (DGW).

Hardware requirements

The Ethernet object requires the correct hardware to be present. This includes a 256-byte
EEPROM device on I2C Bus 1 at address 164.

193 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Only the first 20 bytes of the EEPROM are currently used by the Ethernet object; if you want to
use this EEPROM for storing your own data we suggest you use locations 32 and higher to
leave some room for unforeseen expansion.

If the hardware is missing or if the EEPROM contents have become corrupted, run time error 12
(Device not found) will result. If you suspect EEPROM corruption, contact us for advice on
restoring the correct MAC address to your Ethernet interface.

See Also: The VM2 Application Board 3 (5922) data sheet for details of Ethernet interface
hardware.

Warning: For typical VM2 hardware that has both memory card and ethernet interfaces,
you should avoid leaving a memory card in the holder without making a Venom file system
on that card. This would leave the card unpowered, causing data corruption on the Ethernet
controller which shares SPI bus 2 connections.

DHCP (Dynamic Host Configuration Protocol)

This is often used for configuring IP addresses and other parameters automatically. If you have a
DHCP server on your network (the function may be included in a simple box like an ADSL
router) you can use it to configure the following parameters automatically:

IP address of the VM2's Ethernet interface

IP address of the default gateway to destinations outside the LAN

IP address of a DNS name server

In some networks the DHCP server is linked to a local name server. If a hostname parameter is
given when creating the VM2's Ethernet interface, the name is sent to the DHCP server, and
should be transferred to the DNS server so that another network user can reach it by name. For
example, if the Ethernet is set up with the following command:

Make eth Ethernet(nil, "controller1")
and you create a web server in the VM2, you can reach it using a web browser and the URL:
http://controller1

Deferred Address Configuration

In all versions of Venom up to 2012 12 05, the DHCP configuration is attempted when the
ethernet interface is created.

In versions of Venom from 2013 onwards, DHCP configuration is deferred until the interface is
actually used to send or receive data, and is repeated whenever the link (i.e. the electrical
ethernet connection) has gone down and come up again.

194Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

Address

The address message is used for several different purposes within the Ethernet object:

Get an IP address from a DHCP server on the network

Set a fixed IP address

Clear the routing table

Set a default gateway address

Set up a gateway for a specific address range

Specify a name server

Set up the VM2 as a DHCP server

Enable Multicasting and received multicast packet filtering

Get an IP address from a DHCP server

Address('A' [, str hostname]) Int

(Mnemonic: "Automatic")

This attempts to use DHCP to get or refresh the IP address and gateway and DNS addresses
from a DHCP server on the local network.

The value returned is True (1) if address information was successfully obtained from a DHCP
server, False (0) if there was no server response. If there was no server response, the IP
address of the Ethernet interface remains unchanged.

This message is useful if an ethernet interface needs to be reconfigured from a static to a DHCP-
assigned addressing configuration, or if the hostname needs to be changed.

In Venom versions up to 2012 12 05 it was also useful if an ethernet connection did not exist
when the interface was created, but has since become available; however in later versions of
Venom this now happens automatically when the electrical ethernet connection is detected.

Address Conflict

It is possible for the DHCP server to offer an address that is already being used by another
device. This (rare) condition is detected and the server will be asked for a different address until
an acceptable offer is received.

Set a fixed IP address

Address('I' [, ipaddr addr[, ipaddr mask]]) int

addr is an IP address to assign to the Ethernet interface.

mask is a mask to define the network part of the address.

The value returned is the IP address of the interface.

195 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If mask is not specified a default value is assigned according to the standard Internet address
classes convention:

Address Range Mask

0.0.0.0 – 127.255.255.255 255.0.0.0

128.0.0.0 – 191.255.255.255 255.255.0.0

192.0.0.0 and higher 255.255.255.0

The value of addr is determined by the range of addresses used by the network. In an existing
network, a network administrator should assign a suitable address and mask value for the device
being attached. For private networks, these will usually be assigned from special ranges of
addresses which can safely be used without reference to any internet authority. These are:

Address Range Mask

192.168.0.x – 192.168.255.x 255.255.255.0

172.16.x.y – 172.31.x.y 255.255.0.0

10.x.y.z 255.0.0.0

In the lists above, all addresses in one network must have the same values in the parts designated
by digits, and all must have different values denoted by x,y and z. In general, a 1 bit in the mask
corresponds to part of the network address (constant within the LAN) and a 0 bit corresponds
to part of the host address (different for each device within the LAN).

If you have previously set a gateway address it will be removed when you assign an IP address
to the Ethernet interface. Therefore if you need a gateway, you should set the IP address first,
then the gateway address.

Address Conflict

If you use this method to attempt to assign an address that is already being used by another
device on the network, the address conflict is detected, with the following results:

A run time error, unless ErrorAction was used to prevent this.

The Status message will return a value of 3

The link will not work (no packet will be transmitted)

DHCP

If you created the Ethernet object specifying DHCP, you should not need to use this message to
set the IP address as the DHCP server will have sent an IP address to the VM2. It may be
useful, however, to check the value of the IP address is non-zero to verify that DHCP
configuration was successful - failure will result in an IP address of zero.

Clear the routing table

Address('C')

(mnemonic “Clear”)

This removes all IP routing table entries for this interface.

196Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

Set a default gateway

Address('D', addr)

(mnemonic: "Default")

This sets a default gateway. All packets not routeable via an explicit route will be sent to this
gateway in the LAN for forwarding to another network. If the addr parameter is missing, the
current gateway address is returned, or 0 if there is none.

If you have previously set a gateway address it will be removed by assigning an IP address to
the Ethernet interface. Therefore if you need a gateway, you should set the IP address first, then
the gateway address.

DHCP

If you created the Ethernet object specifying DHCP, you may not need this message, as the
DHCP server should have sent the gateway address.

Set up a gateway for a specific address range

Address('G', addr, subnet [,mask])

(mnemonic: "Gateway")

addr is the address of the gateway, which must be local to the network.

subnet is the base address of the range of addresses to be routed via that gateway.

mask if specified, sets an subnet mask to define the range of addresses. If not specified
a default mask is used following the rules for eth.address('I').

This sets up a gateway through which to route packets with addresses in a given range. It will not
often be necessary to provide a gateway address for a range of addresses like this as most
networks will use a default gateway for everything not local to the LAN, but this capability
allows more complex setups when required. Note that the VM2 cannot obtain information on
such networks by DHCP; you have to specify it yourself.

Set Up Multicast Transmission

Multicast addresses can be used with UDP to send a single packet to a group of devices. The
sender does not need to know which devices are receiving a multicast packet. Venom does not
currently support any protocol (such as IGMP) for "subscribing" to a multicast group, so routing
of multicast packets has to be controlled by manually configuring routers and switches, or more

197 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

simply but less efficiently by using cheap network switches that treat multicast packets as
broadcast, copying them indiscriminately to every port.

Address('M', Int Enable)

If enable is 0, all multicast reception and transmission is disabled (the default state when the
ethernet object is created)

If enable is 1, multicast transmission is enabled on any IP address in the range 224.0.0.0 to
240.255.255.255. This is the address range allocated by the IANA (Internet Assigned
Numbers Authority) for all multicast addressing using IPv4.

Set Up Multicast Reception

Address('M' [, low [, high]) Int

low String or integer representing IP address.

Sets lowest address for incoming multicast packets

high String or integer representing IP address.

Sets highest address for incoming multicast packets (default = low)

This allows the ethernet interface to receive selected multicast IP packets.

The range for low and high is 224.0.0.0 to 240.255.255.255, which is the address
range allocated by IANA for all multicast addressing using IPv4. Addresses outside this range
will cause a run time error (except for the integer values 0 and 1 described above)

Because the mapping of IP multicast addresses to Ethernet addresses only uses the low 23 bits,
some multicast messages outside the range specified may still be received. Received multicast
UDP packets should be filtered by inspecting the value returned by udp.Address(1).

Selection of Address Range for Multicasting

The addresses in the IP multicast range are further subdivided for specific purposes, including
some assigned to specific individuals or organisations. See http://tools.ietf.org/html/rfc5771 for
full details. In practice you are most likely to want to use the "Administratively scoped" range
described in RFC2365 (http://tools.ietf.org/html/rfc2365) which uses addresses 239.0.0.0 to
239.255.255.255. Packets with addresses in this range are expected to be kept within a
defined administrative boundary by configuring routers to block them from crossing that
boundary, which means you don't have to register the addresses you are going to use with any
organisation.

In practice, it is often actually safe to use any multicast address within a LAN, but ask the
network administrator if you are not sure.

http://tools.ietf.org/html/rfc5771
http://tools.ietf.org/html/rfc2365

198Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

Specify a name server

Address('N', addr)

(Mnemonic: "Nameserver")

Sets the address of a DNS nameserver to resolve domain names. If addr is missing, the
current nameserver address is returned as an integer.

This message is the equivalent of sending the message Find(0) := addr to an IP object.

If you need to use domain names, you should set the address of a DNS server known to be
accessible to your network. This will either be a server on your LAN itself or that of your
Internet Service Provider.

DHCP

If you created the Ethernet object specifying DHCP, you may not need this message, as the
DHCP server should have sent the name server address.

Get the MAC address

Address('H', addr) Int
Address('L', addr) Int

(Mnemonic: "High", "Low")

These return the high and low 3 bytes respectively of the Ethernet interface's Ethernet address
(MAC address).

You cannot set the MAC address this way, only read it.

As the MAC address is a 48 bit number, it needs two Venom (32 bit) integers to represent it.

The MAC address is stored in a EEPROM and programmed during manufacture.

Set the MAC address

As MAC addresses are globally unique they should not be set without great care!

However, if you construct your own Ethernet circuit, and you have a MAC address you can use,
you can set the MAC address for your hardware like this:

Call Make for Ethernet, but add $40 to the 'hardware select' parameter and specify the high
and low parts of the MAC address as two 24-but numbers in the next two parameters:

Eth := New Ethernet($40 + $0c, MAC_H_24, MAC_L_24)

If you need to buy MAC addresses we can supply them from our pool.

199 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

VM2 as a DHCP server

Address('S', low_addr, high_addr [, hostname [,
domain]])

(mnemonic: "Server")

low_addr Int or string: lowest IP address in DHCP pool

high_addr Int or string: highest IP address in DHCP pool

hostname The VM2's own host name (default "vm2")

domain The VM2's domain name (default none)

This sets up the VM2 as a DHCP server. The low and high addresses should have the same
network address as the Ethernet interface itself, but the Ethernet interface address should NOT
be within the range specified.

e.g. if the Ethernet has an address 192.168.1.1 it is a class C address (see above) with network
address 192.168.1.0

The DHCP low and high addresses must be in the form 192.168.1.x but not include
192.168.1.1

e.g.

MAKE eth ethernet(nil, "192.168.1.1")
eth.address('S', "192.168.1.100", "192.168.1.199")
; VM2 can now be reached as "vm2" by any connected DHCP client.

In this mode, the VM2 also acts as a limited DNS name server: a request for its own host name
will return its IP address.

For example with the default values, this means the fully qualified domain name is "vm2".

If the domain was specified as "mynet", the domain name would be "vm2.mynet".

Applications of DHCP Server Mode

DHCP server mode is useful if you have a VM2 in the field and want to be able to connect to it
intermittently with a visiting laptop computer, when the Ethernet port is not part of a local
network so there is no other DHCP server. A CAT5 Ethernet cable connects the laptop direct
to the VM2, and the VM2 will configure the network automatically. (Old laptops might need a
"crossover" cable; modern laptops can use both crossover and straight cables as they use Auto-
MDIX). On the laptop you can use a web browser or ftp client to connect to the VM2 with the
hostname configured in the VM2, default "vm2".

200Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

Connect

Connect Int

(New from 2013 onwards)

When an ethernet interface has been created, no address configuration (i.e. DHCP or checking
for conflict with a static IP address) is done until the ethernet is used for sending or receiving
data.

This message waits for the physical link to come up (up to 3 seconds), then runs DHCP
configuration if the link is newly up, and returns true (1) if successful.

If the link was already up and configured, it returns immediately.

A returned value of 0 means either the link is disconnected (e.g cable unplugged) or for an
ethernet that uses DHCP, no DHCP server could be found.

This message enables you to verify that a connection is available, in case you want to take
alternative action if it has failed.

cf. Status which always returns quickly but only tests the electrical connection of the ethernet
cable.

Count

Count(int n [, 0]) int

The value returned is a count of events as specified by n:

n = 0 Packets received

n = 1 Packets transmitted

n = 2 Missed received packets

n = 3 Transmit errors

n = 4 Collisions

If a second parameter with a value of zero is present, the counter is reset to zero.

Debug

Eth.debug(0) Int

Turns on (1) and off (0) packet level debugging.

201 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

With packet debugging on, a summary of every packet sent or received is shown on the serial
terminal.

This can be useful for debugging network problems.

Eth.debug(0) Int n (n > 1)

If n > 1, selective debug display of packet types is enabled. See WiFi.Debug for a table of
bitmapped values corresponding to packet type.

Debug(1)

Shows the contents of the ARP table, which is the mapping of IP addresses to MAC addresses
on the network.

It will list MAC and IP addresses of any network node to which the Ethernet interface has sent a
packet recently.

ErrorAction

ErrorAction Int

Assigning a value of 1 to ErrorAction suppresses a run time error when a static IP address
assignment results in an address conflict. If is effectively a promise that the condition will checked
by a Status message.

Off

Off

Puts the ethernet controller chip into a low-power mode, using a power management feature in
the chip. The ethernet interface cannot send and receive data in this state, but its configuration (e.
g. IP address settings for filtering incoming packets) is retained so will resume operation when it
gets an On message.

If the ethernet is not actually being used, this saves significant power consumption.

The chip is also put into low power mode when the ethernet object is killed, either by an explicit
Die message or exit from a procedure where it was declared Local.

Note that the ethernet chip consumes power even if an ethernet object has never been created in
software, so in power-sensitive applications it is actually worth creating a temporary ethernet
object solely for the purpose of putting the chip into low-power mode:

202Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

New Ethernet(0, 12345).Die

(where 12345 is any non-zero dummy IP address)

Normal operation can be restored with the On message.

On

On

Turns the ethernet chip's internal power back on after it has been turned off with an Off
message.

Status

Status Int

Venom version 2015 12 01 and earlier

This returns true (1) if the Ethernet link is active (i.e. cable connected and carrier detected),
false (0) if not.

In 2016 and later version of Venom, that function is provided by Valid

Venom versions from 2016 onwards

In 2016 and later versions of Venom, Status will return 0 for a good connection (Valid = 1)

or an error code which indicates why a connection is unusable.

Status value Meaning

0 Normal operation

1 No carrier (Ethernet cable connection problem)

2 DHCP failure

3 IP address conflict: another device is using the address assigned
to this interface.

Valid

Valid Int

This returns true (1) if the Ethernet link is active (i.e. cable connected and carrier detected),
false (0) if not.

203 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

This message is only available in versions of Venom released in 2016 and later.

For earlier versions Status has identical functionality.

cf. Connect.

Time

Time Int

This returns internet time as Venom time value, which is the time in seconds since midnight GMT
on 1 January 1990, if a suitable time server can be contacted.

It behaves in exactly the same way as udp.Time. and is provided to save the inconvenience of
creating a UDProt object purely to get the internet time.

Example

Synchronise VM2 real time clock with internet time

make eth ethernet
clock.Time := eth.Time

PRINT

Print <Ethernet> [: Int mode]

Printing an Ethernet object will display its MAC, IP address and related information in the
following format:

eth0:
MAC = 00:50:c2:3d:04:4b
IP = 172.16.1.252
DNS = 172.16.1.148
GW = 172.16.1.199
host = vm2

If a colon operator is present, it can have the following effects:

n Description Examples

0 Print information as above as above

1 Print MAC address only 00:50:c2:3d:04:4b

2 Print IP address only 172.16.1.252

204Ethernet

Copyright © 2009-2021 Venom Control Systems Ltd

3 Print DNS server address 172.16.1.148

4 Print gateway address 172.16.1.199

5 Print host name(and domain if exists) if specified when setting
up as a DHCP client or server, or the string "<no
hostname>" if not defined.

vm2

vm2.mynet

<no hostname>

FileSystem

Venom 2 supports file systems on many different media. File systems can be created on:

On board RAM. Up to 900k bytes are available for this purpose, if the memory is not
needed for other purposes by the application. On a VM2 with a battery fitted, the RAM
retains data when the power is off. RAM files are very fast, both reading and writing.

On board Flash, with a capacity of about 7Mbytes. This retains its data without power.
Reading is very fast; writing can be slow and excessive write cycles could wear out the
flash memory. The Flash File System is also accessible as a 'Mass Storage Device' via
USB - see USB access to Flash File System.

Memory Cards (SD or SDHC) with capacities up to 32Gb. Both reading and writing
are slower than other media, and the media may be subject to wear from excessive
writing. Memory cards are removable and so may be used to transfer data between a
VM2 and other devices.

External USB Mass Storage Devices - e.g. USB Flash Drives, or other USB disc
drives. Flash-based drives have similar properties to memory cards.

The Venom file system is compatible with the Windows FAT12, FAT16 and FAT32 file
systems, and has full support for long file names and subdirectories. Full Unicode in filenames is
not supported, but 8 bit characters representing the first 256 code points of Unicode (also
known as ISO 8859-1 or Latin-1) can be used.

Summary of messages

205 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Address

Adjust

Connect

Copy

Count

Debug

Done

Find

Empty

Flush

Free

Length

Name

Open

Remove

Reset

Status

Time

Valid

Print

Creation

There are four different file system media available on the VM2 and each has a slightly different
creation syntax. Please see:

SD card file system

Internal RAM file system

Internal Flash file system

External USB file system

SD Card Creation

Make <object> FileSystem(str type, [Int unit[,Int
partition[, Int cachesize]]])

type

"SDI2
C"

specifies an SD card in a socket with I2C interface for card detection
hardware and power control, such as that fitted to the 5902 Application
Board 2.

206FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

"SD" or "FSD" specifies a fixed SD card with no IC2 "card present" or write protect detection hardware,
such as the micro SD card on the 5922 Application board.

unit

(optional)

Hardware selection information. For standard hardware configurations leave this
parameter out, or use the value 13.
For other hardware configurations please contact us.

Prevent file system check on creation

If you set bit 7 e.g. by using $80 + 13, the initial detailed self check of the file
system is skipped (see Valid(0) and Valid(1).) This saves time with high capacity
cards with a large volume of file data, but is slightly dangerous as file system
corruption is not detected and repaired when the file system is started up.

partitio
n

(optional)

(default: 0) selects a partition if the device has a partition table. SD cards are
usually formatted with a partition table and a single partition which is selected as
partition 0.

cachesize
(optional)

Specifies the amount of memory in bytes to use for block cacheing. Default 20k;
minimum 5k, maximum 100k.

MMC, SD and SDHC cards and FAT12, FAT16 and FAT32 formats are supported,
allowing card capacities up to 32GB.
The SPI protocol is used: this should be supported by all the above card types.
For removable types, if a memory card is not present, a file system framework will still be
created, but a card must be present before any I/O is performed or a run time error will then
result.
A file system must already exist on the memory card; this driver cannot create a new one.

Example

Make fatfs FileSystem("FSD")
Make fatfs FileSystem("SD")

Warning: For typical hardware that has memory cards and ethernet or USB host
connections, you should avoid leaving a memory card in the holder without making a file
system on that card. This would leave the card unpowered, causing data corruption on the
Ethernet and USB host systems which share SPI bus 2 connections.

When creating an SD card file system on the Application Board 3 (5922) you will need
to first switch on the card's power supply. See the 5922 datasheet for details.

More than one SD card

 For systems with more than 1 fixed SD card, you need to call System.Debug(22, unit1,
unit2) to pre-initialise all the cards before making a filesystem on any of them.

Example

Debug(22, 13, 15)

207 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make fs1 Filesystem("fsd", 13)
Make fs2 FileSystem("fsd", 15)

RAM FS Creation

Make <object> FileSystem("RAM", Int size)

"RAM" Indicates that we are using a RAM disk for storage

size Size of RAM disk in bytes. Minimum 3072 (3K), Maximum 921600 (900K).
For predictable results, make this a multiple of 512.

Example

Make ramfs FileSystem("RAM", 1024 * 10)

Rough Guide to allocating RAM disk space

Table of approximate filing system overheads versus RAM disk size.

RAM disk size Overhead Root Directory Entries

3K - 29K 2K 32

30K - 79K 3K 64

80K -346K 4K 96

347K - 688K 4.5K 96

689K - 900K 5kK 96

Notes:

File data is allocated in 512 byte blocks, so allow extra space for "slack" in unfilled blocks at
the end of files.

Space for the root directory is fixed for a given RAM disk size, as shown in the table.

A file may use more than one directory entry - see Root Directory Limitation

Bug alerts

Both the RAM disk and the Flash File System use persistent data stored in non-volatile RAM.
Because of this some particular limitations apply to these objects:

208FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

 After a reset, if you recreate the RAM disk with a different size then the old RAM disk will
be overwritten and a new, empty RAM disk of the new size will be created. All your old files
will be lost!

 If you need to create both a RAM disk and a Flash File System, you must create the RAM
disk first (after a Venom Run or Reset).

 You should not try to create a RAM disk or a Flash file system more than once after a
Reset, as this leads to undefined behaviour.

The best way to ensure that all of the above conditions are met is to create the RAM and Flash
filing systems within the init procedure, and use Run (or F10 in VenomIDE) to run your code.

Flash FS Creation

Most VM2 controllers* have an 8MB flash memory built in, 7MB of which is reserved for a file
system. The Flash File System may be created in either Read-Write mode, or in Read-Only
mode. Read Only mode uses much less RAM.

Read-Write Flash Filesystem

Make <object> Filesystem("FLA" [, Int cachesize])

"FLA" or
"FLASH"

Indicates that a Flash File system is to be made

cachesize

(optional)

Default: 70k (70 * 1024) - recommended.

Minimum: 5k (5 * 2014)

Maximum: 100k (102400)

Any non-zero value outside the limits results in default cache size.

Note: A cachesize of 0 indicates Read-Only mode - see below.

The actual memory used for cacheing is the specified size + 64k, so the default allocation uses
133k of memory.

Using less than the default size will affect performance and wear out the flash memory faster if
your application does a lot of file writing.

Using more than the default size may help performance if you have many files open for writing,
deeply nested directory paths or directories with many files in them.

Example

Make ffs FileSystem("FLA")

209 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Read-Only Flash FileSystem

Make <object> Filesystem("FLA" , 0)

If your application doesn't need to write to the flash file system, this option saves you 133k of
memory compared with the default read-write file system. Any attempt to create or delete a file,
or to write to an existing file will give run time error 7 "Write to read-only item".

Example

Make ffs FileSystem("FLA", 0)

Notes

 The root directory has 512 directory entries and file data is allocated in 1k clusters in a
standard FAT16 configuration.

 The VM2L doesn't have an on-board Flash memory, and so can't support an on-board
Flash file system.

 Note that if you need to create both a RAM disk and a Flash File System, you must create
the RAM disk first. Please see here for more information.

USB FS Creation

Make <object> Filesystem("USB" [, Int partition, [, Int
cachesize]])

"USB" (not case sensitive)
Indicates that we are making a file system for a USB device

partition

(optional)

(default: 0) selects a partition if the device has a partition
table. SD cards are usually formatted with a partition table
and a single partition which is selected as partition 0.

cachesize
(optional)

Specifies the amount of memory in bytes to use for block
cacheing.
Default 20k; minimum 5k, maximum 100k.

This will access the file system on a USB mass storage device (e.g. flash drive or digital camera)
connected to the host connector (USB Type A) on the 5922 Application board or similar
hardware using a MAX3421E chip on SPI bus 2. Currently there is no support for USB hubs or
any other kind of USB device, so the device has to be plugged straight into the USB Type A
socket with or without a cable.

The filesystem behaves like a removable SD card, including suspending the device when the
cache is clean and there are no files open. On most removable storage devices this means an

210FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

LED on the device will be illuminated while busy and off when it is safe to remove.

Example

Make usbfs Filesystem("USB")

 Warning: For typical hardware that has memory card and USB host connections, you
should avoid leaving a memory card in the holder without making a file system on that card. This
would leave the card unpowered, causing data corruption on the USB host which shares SPI
bus 2 connections.

Address

Address (str filename) Int

Address returns the address in memory of the data in a file, if possible.

filename is a text buffer or string containing the name of a file.

For certain applications like graphics, fonts or audio output, direct memory addressing
streamlines the use of data from a file as it does not have to be copied to an area of memory
first, and the file does not even need to be explicitly opened.

Address will return 0 if no address for the file's data exists. This will be for one of the
following reasons:

1. The file system is not memory mapped (e.g. SD cards)

2. The file's data is not contiguous in memory

3. The file doesn't exist or is a directory

Adjust

Adjust Int

This causes the file system to reorganise its data so that all the free space is allocated in one
block at the end of the storage medium or memory.

Its purpose is to ensure that any file created afterwards is guaranteed to have all its data in one
contiguous block, as long as files are added one at a time.

Note that this is not quite the same as defragmenting. Files whose data blocks are interleaved on
the storage media will remain in that condition.

211 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The value retuned is the number of clusters that were moved. If 0 is returned, then no changes
were made.

This message will work on any filesystem, but is only useful on the onboard flash system where
certain files need to be allocated all in one block,

for example, System Protect(2) and Protect(3) for OS and application updates, and
GraphicsLCD Bitmap and Fontdata when used with files

The Adjust process generates a "percentage done" value which can be accessed from another
task with the Filesystem Done message.

 Note: all files in the FileSystem must be closed before using Adjust else there will be a
runtime error.

Connect

Connect(Int connectstate [, Int port])

connectstate1 or True = enable USB access to Flash File System

0 or False = wait until current USB access is complete then disable USB

2 Put fileSystem into 'file manager' mode

port For connectstate 2, specifies the serial port (default 1)

Connecting to USB

On the Flash File System, this message allows an external host access to the file system via a
USB connection such as the USB Type B connector on the Application Board.

You can continue to use the file system in Venom, but if your Venom program writes to the file
system the USB host will see a "drive not ready" condition. This will persist until you send the
filesystem a Flush message, after which the USB host will see a "drive ready" event and re-read
the memory. This is necessary because the host has no other way of knowing that the data on
the filesystem has changed.

While the USB host is writing to the file system any writes from Venom are held up until the
USB write has finished. Host writing is considered finished after an idle period of 2 seconds.

In general, it is better not to attempt concurrent writing to the flash file system from both ends of
the USB link.

Concurrent reading of files presents no problems.

212FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

The Memory card and RAM file systems are not currently available on USB.

Note: do not use Stop All while Connect is set - a system task is created to deal with
USB transactions and Stop All will stop that task.

Connecting to Serial Port in 'File Manager' mode

connect(2)

connect(2, 3) ; Connect to port 3

This puts the file system into a mode where it receives commands via a serial port. These enable
files to be transferred to and from the VM2, and some other file system operations.

File manager mode has a disconnect command which causes the Connect message to return.
The disconnect command is a single byte value of 3, which you can send by pressing Ctrl+C if
the VM2 has been left in file manager mode. The file manager uses a binary protocol and cannot
be directed from a terminal.

Support for transferring files in this way is available in VenomIDE.

Please contact us for documentation on the details of the serial protocol, and a Windows
command line program that uses this protocol, both exe file and source code.

Copy

Copy(Str srcpath, Str destpath [,fs destfs])

srcpath The source path and file name

destpathThe destination path and file name

destfs The destination file system, if different from the source file system

This copies a file or files from one location to another, in the same or a different file system.

If srcpath specifies a directory, the whole subtree is copied i.e. files and subdirectories

Any destination files must not already exist, or a run time error will result. If you want to
overwrite existing files you must remove them first.

You cannot copy a directory to a subdirectory of itself and an attempt to do so will result in a
run time error.

The file copying process generates a "percentage done" value which can be accessed in another
task with the Filesystem Done message

The root directory can be specified as a source or destination, using "/".

213 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Example

MAKE ram FileSystem("RAM", 100*1024)
MAKE sd FileSystem("SD")

if ram.find("dir1") IsFalse
 sd.copy("dir1", "dir1", ram)

ram.remove("dir1-backup")
ram.copy("dir1", "dir1-backup")

Example of copying complete filesytem

This code copies the total contents of a USB stick into the Flash File System.

Make ffs FileSystem("FLA")
Make usbFs FileSystem("USB")
ffs.Remove("*")
usbFs.Copy("/","/",ffs)
ffs.Flush ; Not strictly necessary.

Count

Count Int

Returns the number of files in the root directory.

fs.Count(string pattern) Int

Returns the number of files matching the pattern in one directory.

pattern Specifies a subdirectory and optionally also a filename or wildcard pattern. It
can be a text buffer or fixed string.

Return value: the number of files in a directory.

Both plain files and subdirectories are counted, but not files within the subdirectories.

If the pattern specifies a directory all entries in that directory are counted.

If the pattern specifies a plain file name or a wildcard, the number of matching names is returned.

Examples

Print fs.Count, CR

214FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Print the number of file in root directory

Print fs.Count("tmp"), CR
Print fs.Count("tmp/*"), CR

Print the number of files in directory "tmp". The above two examples have identical effect.

Print fs.Count("tmp/*.txt"), CR
Print the number of files in "tmp" whose names end with the characters ".txt"

 See also: Wildcards and File Name Matching

Debug

Debug

Lists debug options available.

Debug(Int a[, Int b]) Int

Memory Cards (SD/SDHC)

Parameters Action Applies to:

(1, n) Read block n from device and display on
screen

all

(2, 0)

or (2)

Display file system information: size, cluster
size, position of FAT and root directory etc.

all

(2, 1) Show boot sector all

(3, n) Show details of FAT entry n all

(4, n) Show where block n is used (FAT, root dir, file
etc.)

all

(6) print status with explanatory text, e.g.

stat=> 19 MEDIA CACHEWRITE
FILES_OPEN

all

(10, 1) Return no. of blocks in cache

SD, Flash and USB only(10, 2) Return memory used by cache

(10, 3) Return number of cache hits

215 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

(10, 4) Return number of cache misses

(12, 1) Return no. of block reads from card

SD only

(12, 2) Return no. of block read errors

(12, 3) Return no. of block read resets

(12, 4) Return no. of block writes to card

(12, 5) Return no. of block write errors

(12, 6) Return no. of block write resets

Notes on block read/write statistics for SD cards:

If a read or write operation fails, an error is counted and the operation is retried several times.

Every two retries, the card is reset (re-initialised) and a "read reset" or "write reset" is counted.

We have found that some cards occasionally get a read error which recovers on the second
attempt, and a rare instance of a write failure that required a reset. These count values may help
to indicate the reliability, compatibility or state of wear of a particular card.

The counts are reset when the file system is created or recreated, including after sending a reset
message to the file system or if the card is removed and replaced.

Use of Debug with other parameters is discouraged and subject to change, as these options are
intended for internal use by the Venom developers.

Done

Done Int

If another task is performing a FileSystem Copy or Adjust operation, this message will return an
estimate of the percentage of that operation completed. The returned value is therefore an integer
in the range 0 - 100.

For example this could be used to show a bargraph indicator of progress on a graphics display.
It is particularly useful on flash and SD card based file systems where the operations in question
can sometimes take several seconds to complete.

Because of task timing uncertainties, it's possible to read a Done value of 100% before the task
has actually started. To avoid this, either wait for a short time before checking the Done value, or
preset the Done value to 0. Examples of both methods are shown.

Example Using Wait

Start fs.Copy(source, dest)
Wait 10 ; allow time for task to get started

216FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

While fs.Done < 100
[
 printf("%u%% done\n", fs.Done)
 wait 1000
]

Example Using Presetting the "Done" value to 0

fs.Done := 0
Start fs.Copy(source, dest)

While fs.Done < 100
[
 printf("%u%% done\n", fs.Done)
 wait 1000
]

Find

Find(string name) Int

name is a string or text buffer.

Returns:

0 if the named file does not exist

1 if the name matches a plain file

2 if the name matches a directory

The name can also be a wildcard specification, testing for the existence of at least one matching
file if it returns non-zero.

 See also: Wildcards and File Name Matching

Empty

Empty

This message wipes the FAT and root directory of the file system, leaving it empty.

It is like a DOS/Windows "quick format".

217 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Use of this message guarantees restoration of a valid file system if it has become corrupted by a
program crash, card removal or power failure while the file system was in use, at the cost of loss
of all files.

If you want to simply remove all the files from a file system then Remove("*") is much faster.

Flush

Flush([Int fullflush])

All file systems

Any open files have their directory entries updated with the file size and current time and date, as
if each open file had been closed and re-opened or sent the Update message.

Memory Cards and USB File Systems

All data in cache waiting to be written to the card is written to the card.

Any parameter is ignored.

Flash File Systems

If optional parameter fullflush is present and non-zero, all data in cache waiting to be
written to the flash memory is written to flash memory. This is not often required as the cache
RAM on a VM2 is non-volatile if a battery is fitted.

See also: Application Note "Data Logging with Memory Card File System" available from
the our website, which discusses the issues of file data integrity and memory card wear. The
issues are applicable to the on board Flash file system too.

Free

Free Int

Returns the amount of free space in the file system, in Kilobytes (1KB = 1024 bytes)

It is calculated from the number of FAT entries marked free.

On higher capacity FAT16 memory cards this can be quite slow, as it works by counting free
blocks, of which there may be thousands.

On FAT32 file systems, a running estimate of free space is used, which is faster but could
become inaccurate under fault conditions, but which is re-created when the filesystem is started

218FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

or when the Valid(n) message is used.

Free(Int size) Int

size is the required amount of free space in Kilobytes. (1KB = 1024 bytes)

Returns True (1) if the free space in the file system is equal or greater than size, False (0) if
the free space is less.

On high capacity FAT16 cards this can be significantly faster as the counting of free blocks stops
as soon as a True condition is reached.

Example

If fs.free(100) IsFalse
 Print "File system space is less than 100k", CR

Length

Length(str Name [, int units]) Int

Return the length in bytes of the file(s) named.

If the name is a wildcard pattern, returns the total size of all files whose names match, including
any files in subdirectories.

If the name is a directory, returns the total size of all files in the directory and its subdirectories.

If no matching file exists, returns 0.

If a units value is present, it changes the units for the size value returned:

Units selector Returned result

'K' or 'k' Kilobytes (1024 bytes)

'M' or 'm' Megabytes (1024 * 1024 bytes)

'G' or 'g' Gigabytes (1024 * 1024 * 1024 bytes)

any other bytes

It is possible for the length of a file or the total length of several files to exceed the capacity
of a Venom 32 bit signed integer. The maximum value that can be represented is 2
Gigabytes. If the length requested exceeds this, an erroneous value will be returned without
warning. Use of the units selector avoids this problem.

219 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Name

Name(Str old, Str new) Int

Renames or moves file from old directory and name to new. Returns logical true if successful,
meaning that a file with the old name existed. If the new name is invalid, a “File Access” runtime
error (error no. 24) occurs.

old and new can be strings or text buffers.

The file must not be open for writing when renamed in this way. The programmer is
responsible for this - the condition is not detected automatically by the file system.

Note that the full path of the new file name must be specified even if it is in the same subdirectory
as before.

The old and new names can be in different directories in the file system, resulting in the file being
moved without its data having to be copied. A directory can also be moved to a new location, in
which case all files and lower directories under it appear in the same structure under the new
location.

A directory cannot be moved to a subdirectory of itself and an attempt to do so results in a run
time error.

Open

Open(Str name, type [, Int mode]) file object

Opens an existing file for or creates a new file, returning a file variable.

By default an existing file is opened for append i.e. writing to the file adds data to the end.

Parameter Type Description

name string or text
buffer

The full path and name of the file to open

type various Int 8 8-bit unsigned integers

Int 16 16-bit signed integers

Int or Int 32 32-bit signed integers

Float Floating point

Char Characters - i.e. a text file

'd' or 'D' The file is a subdirectory

220FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

mode Int default: file opened for append

+ve values: limit length of file

-1: read only

-2: read only, no cache

-3: create directory if it didn't previously exist

File names

Upper and lower case letters and numerals are allowed in the file name, as are all characters with
code values over 127 and the following special characters:

! $ % - _ + ~ . / # ' @ () { } & , ; = []

The maximum path and file name length is 260 characters.

The case value of letters in the file name is stored unchanged when the file is created new, but the
process of matching for an existing file name is not case sensitive.

A file can be created in a subdirectory by specifying its full path. If you do not specify a mode
value of -3, the subdirectory must exist first. You can create a subdirectory by using the special
type 'd' or 'D' (see below).

When specifying a file in a subdirectory, the character '/' is used to separate directory names.
This is the Unix convention as opposed to the Windows/DOS convention and is more
convenient as '\' is used as an escape character in Venom strings.

Mode Parameter

The optional mode parameter affects the way the file is opened in several ways, described in
more detail here.

Mode value Description

Positive, >= 1024

(max length)

Sets a maximum length for the file. If created this way, writing beyond that
length will cause data to be removed from the beginning of the file. This is
useful for log files where only recent data is of interest, and in such cases
can remove the need for extra housekeeping code to prevent the file
system from running out of space.

Note that the mode parameter, when used to specify a
length limit, is in bytes and is mainly intended for use with text
files. This parameter, if specified, must not be less than 1024.
The actual file size may be considerably bigger than specified
as it is truncated to a whole non-zero number of FAT
clusters, and on some systems a cluster can be as big as 32k.

-1

(read only)

 File is opened read-only. This has the following consequences:

You can open more than one read-only instance of a file without getting a
run time error

Any attempt to write or modify the file will cause a run time error.

221 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If the file did not exist, attempting to open it read-only will result in a run
time error.

-2

(no cache)

File is opened read-only (see above) but in a mode that does not use the
file system cache for the file's data blocks. This can lead to faster
performance in cases where the file size is bigger than the cache, by saving
time wasted searching the cache for blocks that will never be there, and by
leaving more useful FAT and directory blocks in the cache to speed up the
next file system operation. This mode is only recommended when reading
the file linearly, not if you are intending random access with the Element
message.

-3

(create directory)

Any required subdirectory (including nested subdirectories) will be created
automatically if needed.

Example

a := fs.open("abcde.txt", Char) ; a text file in the root directory
b := fs.open("/data/numbers", Float) ; a float file in the subdirectory /data

Empty file is created with read and write pointers at 0.

Errors When Opening a File

Following are some possible reasons while opening a file could fail:

Invalid file name - must only contain valid characters. See above.

Too many slots in root directory. This can happen when you create many files with long
names, especially in a RAM disk where root directory size is limited. see Creation (RAM
disk) and table of root directory sizes. For solutions to this problem, try (a) fewer files, (b)
shorter file names, (b) putting files in a subdirectory where directory size is limited only by
total file system space or a maximum of 65535 directory slots.

 Subdirectory does not exist. When creating a file in a subdirectory, you must create the
subdirectory first if it did not exist or use a mode value of -3.

Trying to open an existing plain file as a directory or vice versa.

Opening in read-only mode and file did not exist.

File system full.

222FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Remove

Remove(str pattern) Int

pattern is a string or a text buffer.

Files with names matching the pattern are deleted.

If the pattern matches a directory, the directory and all its contents, including subdirectories, are
removed

The value returned is the number of files removed in the operation.

A run time error results if you attempt to remove a file that is currently open.

Example

-->Print fs.remove("temp*"), " files deleted", CR
 3 files deleted
-->Print fs.remove("data/logs") log files deleted", CR
 10 files deleted
-->

(it is assumed that /data/logs is, for example, a directory containing 9 files)

Removing all files

To remove all the files in a filesystem use the wildcard *.

fs.Remove("*")

Reset

Reset

This performs the same actions as when the memory card or other removable media are
removed and re-inserted (or a different card inserted)

Any open files are forced closed and become "dead" objects

The memory used by the file system is freed

The file system is recreated by detecting and reading the card or media

For RAM disks, only the first of the above actions is applicable.

223 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Status

Status Int

This returns various separate pieces of information about the file system as bits of a single integer
value:

Bit Value Meaning Applicable File Systems

0 1 Valid media and file system All

1 2 Media write protected (e.g. SD card 'lock' tab) Removable Memory card and
flash

2 4 media state changed (removed or replaced) 1 Removable Memory card and
USB

3 8 Data written to cache has not been copied to

media yet (see Flush message)2

Memory card, flash and USB

4 16 At least one file is open All

5 32 File system connected to USB host (Connect
(1) state)

Flash, under control of external
host by USB

6 64 USB active (host activity detected) 3 Flash, under control of external
host by USB

Notes:
1 Note that the "Media state changed" bit will only be set in the first Status message after a
memory card has been removed or inserted.
2 If the flash file system has been written by Venom code, the data remains in cache until a
Flush(1) message has been sent to the filesystem. In contrast, if the Filesystem has been
written via USB, the cache is flushed (and this flag cleared) after a 2 second period of inactivity,
which means this flag bit is a useful indication that an external write to the system has finished
when the flag is 0.
3 In practice, this provides a useful indication that the USB cable is physically connected as the
bit will be set whether or not data is being transferred, unless the device has been suspended by
the external host.

Status(1) Int

This form of the Status message returns a number indicating the media type of the file system:

0 RAM disk

1 Memory Card

2 On Board Flash

224FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

3 USB Mass Storage Device (Flash Drive)

Status(2) Int

This returns the number of currently open files as an integer.

Time

Time(str name) Int

name String or text buffer holding name of file

Returned value is time in seconds, compatible with DateTime and RealTimeClock objects.

The value corresponds to the time and date when the named file was created or last modified.

If the file does not exist, a value of 0 is returned.

If there was no real time clock hardware present when the file was created or last modified, the
result will be 0.

This message allows the creation/modification time of a file to be found without having to open it.

The timestamp of a file cannot be changed this way. If you want to force a change to a file's
timestamp, open the file and use the file Time message.

 See also: File Time message

See also:

File Close

RealTimeClock object

Valid

1. Simple Check for Valid Filesystem

Valid Int

The returned value is True (1) if the file system is valid. In particular this tests for the presence of

225 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

removable media such as memory cards, and requires the file system to have a boot block
containing sensible values from which a file system was able to be created.

Examples:

If fs.Valid
[
 f := fs.open("myfile.txt", Char)
 ; (code to access files)
]
Else
 Print "No valid file system found!"

2 Test Filesystem for Internal Consistency and Fix Errors

Valid(Int fullcheck) Int

FullcheckFalse or 0 : do a quick test for file system corruption (time limit on lost cluster
check)

True or non zero : include a full check for lost clusters

Returned value: the number of errors fixed.

Explanation

This performs a check on the internal consistency of the File System.

It detects and removes invalid directory entries, cross-linked files and lost clusters (blocks which
are marked used but not found as part of any file)

On FAT32 file systems, the current free space estimate is recalculated by counting the free
clusters.

With large capacity memory cards (e.g. 1GB and higher) it can take a long time to check every
single allocation entry for lost clusters and in practice this check is rarely needed, so there are
two options:

If fullcheck is zero, a time limit of 100ms is set for checking for lost clusters.

If fullcheck is non-zero, every cluster is checked. This has been been timed at over 30
seconds on a 1GB card with FAT32.

Whenever a filesystem is created, and memory card is freshly inserted or a Reset message is
sent to a file system,the shorter version of this check is perfomed, unless it's an SD card and the
"skip FS check option" has been set in the unit selector (see Creation)

Example:

226FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

errors := fs.Valid(0)
Print "File system check found/fixed ", errors:1, " errors", CR

 See also Status which returns more information about the file media.

3. Check if a String is a Valid File Name

Valid(str Name) Int

Returns true (1) if the name conforms to the rules for FAT/FAT32 file names.

The result will be false (0) if the string is too long or contains illegal charcters.

See Open message for details of allowed characters.

PRINT

Print <FileSystem> [:string pattern] [: format]

Lists the files matching pattern in various formats dictated by the optional colon and number.

pattern
(default: root directory)

If this specifies a directory, the contents of that directory are listed.

If it specifies a plain file or wildcard, only matching entries are listed.

format
(default: 2)

Specifies the listing format

If it is a string, the '%' characters followed by various special symbols
are replaced by information from the directory entry, as listed below.

If it is an integer, it refers to one of four predetermined format strings
as described below.

Special codes in format string

code Meaning
%a DOS attributes 'A', 'D', 'V', 'S', 'H' and 'R'
%b No of bytes in the file, including allocated size if it is a directory
%c Cluster number of 1st cluster in file (for debugging)
%d day of month as two digit number, from file's creation or last modification time
%f UNIX "ls -l" style file mode symbols, fixed as "-rw-rw-rw-" for files and "drw-rw-

rw-" for directories
%h hour as two digit number, from file's creation or last modification time

227 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

%m minutes as two digit number, from file's creation or last modification time
%M month as two digit number, from file's creation or last modification time
%n filename (excluding path)
%N DOS style short file name
%o Month as three letter abbreviation, from file's creation or last modification time
%p directory path to file
%r indicates that a recursive listing is required. This code can be anywhere in the format

string
%s seconds as a two digit number, from file's creation or last modification time
%t Year of file modification/creation if longer than 360 days ago, otherwise time in format

hh:mm

%x DOS-style either file size or "<DIR>"
%y Year as two digits, from file's creation or last modification time
%Y Year as four digits, from file's creation or last modification time
%z File Type code 'F' = file, 'D' = directory, 'L' = volume label

Listing Formats

Basic Format

Form
at

Description Example

0 file names only, one per
line

"%n"

test1.txt

test2.txt

dir1

1 Normal listing

(1st column: F = File,
D=Directory, L =
Volume Label)

F 1990-01-01 00:00:00 400 test1.txt

D 1990-01-01 00:00:00 1024 dir1

F 1990-01-01 00:00:00 0 testdatafile2.
txt

"%z %Y-%M-%d %h:%m:%s %b %n"

2 UNIX ls -l format

(used internally by FTP)

-rw-rw-rw- 1 vm2 vm2 400 Jan 01 1990
test1.txt

drw-rw-rw- 1 vm2 vm2 1024 Jan 01 1990 dir1

-rw-rw-rw- 1 vm2 vm2 0 Jan 01 1990
testdatafile2.txt

"%f 1 vm2 vm2 %b %o %d %t %n"

3 Debug information

(includes starting cluster

F 1990-01-01 00:00:00 400 cl=2 TEST1 TXT
 test1.txt

D 1990-01-01 00:00:00 1024 cl=3 DIR1

228FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

and DOS-compatible file
name)

 dir1

F 1990-01-01 00:00:00 0 cl=0 TESTDATATXT
 testdatafile2.txt

"%z %Y-%M-%d %h:%m:%s %b %c %N %n"

Adding 8 to the format code shows the full directory path to each file

Adding 16 to the format code produces a recursive listing of the contents of subdirectories, and
forces display of full directory path too.

E.g.

-->print fs:17
F 1990-01-01 00:00:00 400 test1.txt
D 1990-01-01 00:00:00 1024 dir1
F 1990-01-01 00:00:00 13 dir1/test11.txt
F 1990-01-01 00:00:00 0 testdatafile2.txt

Each filename in a separate string

If you want a list of files as a set of separate strings (one filename in each string) then you can
Print the filesystem to a 'Buffer of Any', which will do the conversion for you.

You can then put the list in alphabetical order using Sort.

Notes on Using File Systems

File Names

File names in the FAT system are Windows compatible as long as the ASCII or ISO-8859-1
(Latin-1) 8 bit character sets are used.

There is no support for 16 bit characters in either UTF16 or UTF8 encodings.

Directory Separator

In filenames that specify directories, the character '/' is used to separate directory names
from each other and from the final file name. This is the same convention as used in UNIX. Use
of "\" as in DOS/Windows would be inconvenient in Venom as it is a special string escape
character and would have to be written as "\\" every time it was used. Use of "/" is also
compatible with URIs received by the HTTPServer object.

Any path may optionally include a '/' character at the beginning. The root directory is
assumed regardless.

All filenames must specify a full path - there is no such thing as a "current working directory" in
Venom.

The maximum length of a file name including path information is 260 characters.

229 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Wildcards and File Name Matching

Several of the file system and file messages can use wildcard specifications in file names. The
special wildcard characters are:

"?" matches any single character

"*" matches zero or more of any character

For example, the pattern

"*" will match any file name.

"*.txt" will match any file name that ends in ".txt".

"abcd.???" will match any file name that consists of "abcd." followed by exactly
three more characters.

"*2*" will match any file name that contains a "2" anywhere.

Names are stored with case of letters preserved, but file name matching is case-insensitive.

Root Directory Limitation on Number of Files

Programs which create files dynamically and are liable to create a large number of
files, especially with long names, should create them in a subdirectory.

The reasons for this are:

The root directory is fixed as 512 entries for the Flash File System and memory cards not
using FAT32, and much less for RAMdisk

Subdirectories can contain many more file entries, to a maximum of 65535 (theoretically) or as
limited by RAM or memory card space.

Note that file names not conforming to the DOS-compatible 8.3 format take more than 1
directory entry

Frequent renaming, deleting and adding files can fragment the directory, further reducing its
capacity

Note that on memory cards with FAT32 file system (generally anything over 2GB, and some
512MB and 1GB cards), this root directory restriction does not apply.

Multiple access to same file
A file should be opened only once, so a file object has only one read and write point. A run time
error is generated if you attempt to open the same file normally in two variables.

You can open a file more that once at at time if you open it read-only by speficying a third
parameter of -1 in the Filesystem Open message.

230FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

 You can copy a file variable or have multiple tasks access a file through the same global file
variable. If one task is writing to a file and the other is reading, all updates and additions to the
file can be seen by the reading task immediately.

If a file variable is copied to another variable and the file is then closed, access is no longer
possible using either variable.

Locking

The FAT file system is locked internally during the processing of any message that is likely to
involve reading or writing the media, in order to serialize access to the media. This enables
separate tasks to access files in the same system with no data corruption. You can lock the
whole file system, for example if you need to guarantee that the contents of a directory will not
be changed by another task during a sequence of operations. Locking a file is more often useful,
so that different tasks can write to the same file. Printing to a file locks the file automatically for
the scope of the Print statement..

Storage Media Considerations with MMC/SD cards and On-board Flash

The file system works with block device drivers to access the physical media. Because reading
and writing the physical media can be time consuming, and memory cards also have a limit on the
number of writes they can handle in their lifetime, the memory card and on board flash drivers
implement block cacheing so that recently and frequently used data blocks are retained in
memory. This also means that updates to files and directories typically leave some data written to
a cache buffer but not copied to the filesystem media. You can force writing to media by using
the FileSystem Flush message at any time in order to ensure that the data is safe from loss by
power failure or physical media removal.

On the flash file system, blocks that have been modified are held in an area of non-volatile
memory. Writing is delayed to minimize the number of flash write cycles.

The driver can also tell the file system if the media is write protected (applies to MMC/SD only)
and will block any attempt to write to the media.

Removable Media

Special considerations apply to removable media such as memory cards.

With removable storage media, the device driver can inform the file system of media removal
and the file system takes appropriate action including invalidating all the cached blocks.

A FileSystem object can be created with no media present. Similarly there is no problem if the
media is removed or changed while no file is open. When the card is replaced or changed, the
next access to the file system will silently reset and reload its parameters from the card.

If a memory card is removed while a file is open, even if the card is subsequently replaced or a
different card inserted, the next attempt to access any open file will have the following results:

all open file variables will die

The block cache will be destroyed

231 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The presence of a card can be detected without generating runtime errors by use of the Status or
Valid messages.

If supported by the hardware, the file system will illuminate an indicator light whenever a file is
open, data is being transferred or the cache contains data not yet written to the card, warning the
user not to remove the media.

Power Loss

When writing to a file, media removal or power loss can result in loss of data.

Closing a file and re-opening it will guarantee that the directory entry is updated with the file's
size. The filesystem Flush message achieves this without the need for closing the file for all open
files and also (depending on file system type and optional parameter) writes to the media all data
that has been written to the cache.

The FileSystem Flush message involves time-consuming extra media access, so the programmer
must make a judgment about how often and when to use it.

For RAM disk based file systems, the Flush message is still useful for updating the directory
entry, but other data is written directly.

For the Flash File System, cacheing is implemented in non-volatile memory, so even if power is
lost while unwritten data is in cache, it will be written to flash memory when the VM2 is powered
up again. Note that a directory entry (including the file's size) is only as up to date as the last
Flush or Close so this should still be used periodically if a file is being written over a long period
of time.

Errors

Run Time error messages generated in the FileSystem are listed here.

Error 25 - Code checking error

Please report this to us: it means that an internal consistency or bounds check has failed.

Error 26 - File Access error

This typically covers Venom Programming errors, for example:

Read past end of file

Access a closed file

File name too long (max 260 characters) or contains illegal characters

Attempt to open a file in a non-existent subdirectory

Attempt to open too many files in root directory

Attempt to open a file which is already open

Attempt to delete a file which is currently open

232FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Error 7 - Write to Read-Only Item

Device is write protected: SD card WP switch or Flash file system created read-only

Attempt to assign a new name to an open file (this should be done the the FileSystem
Name message when the file is closed)

Error 12 - Device Not Found

This is generated:

if Make specifies a device with the wrong interface type or a non-existent partition
number

on any attempt to access a file if the media was removed and/or replaced

Note that Make will succeed on a removable media device like a memory card holder even if
there is no media present. The media must be present before the software attempts to open any
file or directory. See Status and Valid filesystem messages for ways to check this.

Missing Files, File Corruption and Startup Checks

A Venom application should be designed to be able to cope with missing files for a number of
reasons:

A program so designed is easier to run the first time it is used, otherwise a different
program would have to be run to create the files.

When the file system is started, the media is checked for integrity of the file allocation
information. The checks make little attempt to repair invalid directory entries or free
space allocation; instead, any files that are compromised by file system corruption are
simply removed. An exception to this is where extra blocks have been allocated to a file
but the length shown in the directory entry does not reflect the use of those blocks: in
that case the file is preserved but the unused blocks are freed.

It is impossible to guarantee that files will not be corrupted in RAM disk or on memory
cards, if a program goes wrong (especially one that addresses system memory directly)
or crashes as a result of any run time error or if the power is removed unexpectedly.

USB access to Flash File System

The VM2 can be made to appear just like a USB Flash drive by allowing USB access to the
VM2's Flash Filing System.

There are two methods for making the Flash File System visible on a USB connection

1. Program Mode USB access

2. Run mode USB access.

233 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Program Mode USB access: Production programming

While a VM2 is waiting at the Clear RAM? prompt it will automatically make its Flash file
system available as a USB Flash Drive. This is useful for production programming of VM2s.
No Venom application needs to be running for this to happen. If there was no file system in
Flash memory, an empty one is created. All you have to do is start up the VM2 in Program
Mode on a USB-enabled Application Board and connect it via a USB Cable to your PC or
other host.

In Windows, you should see a new drive icon appear in the "My Computer" windows. You can
open this as a window and drag and drop files into it.

Program Mode USB access is useful for loading the VM2's Flash File System with your
firmware files, e.g.

Venom firmware update files (.vfu)

Bitmap image files (.bmp)

Venom font files (.vaf)

Audio/Sound files (.wav)

You can produce vfu, etc files using Protect. You can also download vfu files from our
website.

The recommend sequence of operations for loading a new OS or firmware is this:

1. Plug the VM2/Application board into your PC using a USB lead. You may need to
configure the Application Board for USB - see the Application Board datasheet.

2. Reset or power up the VM2 in Program Mode. A new USB drive window should open
up (or you may have to find the new drive)

3. Important: Make sure the VM2 drive window has no files in it, or delete them if there
are any. Explanation

4. Drag and drop all your application firmware files into the new drive window.

5. Wait until the copy process ends - you should check that the LED on the VM2 has
stopped flashing.

6. Press the Reset button on your application board (or power the VM2 off and then on)

7. The LED on the VM2 will flash while it reprograms itself with a new firmware. Do NOT
REMOVE POWER OR RESET THE CONTROLLER AT THIS POINT. If you do
you may have to re-load the operating system the slow way: over the serial port, using
VenomIDE.

8. When the LED has stopped flashing then it should reset itself with the new OS and
Application in its flash memory. The firmware update file will have been deleted.

9. Put the VM2 in Run Mode using the switch on the Application Board and then reset it. It
should start running your application.

234FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Note: it is also possible to update a VM2's firmware remotely by transferring a vfu file to
the Flash Filing System and then calling Protect to initiate the re-programming process.

Activity indicator

The VM2's on-board LED will flash rapidly during USB write activity to indicate that you
shouldn't pull out the USB cable, reset the VM2 or interrupt the system in any other way.

Run Mode USB Access

By default the Flash File system is not accessible via USB when a Venom programming is
running. USB access is enabled by sending a Connect message to the file system. The USB host
and the Venom program will both have access to the filing system.

Hardware requirements

USB Filing System access is available on VM2 (5900) and VM2D (5907), but not on VM2L
(5901).

The VM2 should be connected to a suitable USB hardware interface. Please see the application
note Designing VM2 Application Boards, available on our website, for more details.

If you are using Application Boards 5902 or 5922 then the USB switch (sometimes labelled
Dflt Comm) must be in the OFF position and the correct links must be fitted. See the datasheet
for the 5902.

Currently only the 7 MByte Flash File System is accessible by USB. (The Memory Card and
'RAMDISK' filing systems may become accessible to USB later).

Contiguous Files

Some applications for files in the Flash Filing System exploit the fact the file data can be directly
addressed in memory, for example:

Production programming of 'empty' VM2s with their application code and/or their
Operating System

Remote updating of VM2s with new application code and/or Operating Systems

Audio files

Bitmap image files

Font data files

235 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

However, for the file data to be addressable in memory the file data must occupy a single (
contiguous) memory block within the Flash Filing System.

Creating contiguous files

There are two different ways to create contiguous files. Each is appropriate to a different
situation.

1. From your PC, over USB:

1. Delete all the files in the Flash Filing System

2. Create the files you want, either one at a time or in one or more drag-and-drop
operations from Windows.

3. All files created in this way will occupy contiguous memory.

4. Note that once you have extended or deleted an existing file, files that have been
extended and new files are not guaranteed to be contiguous.

This may be understood by considering that the FAT filing system allocates additional memory
blocks to files by looking for unused blocks, always starting from the lowest address.

2. From within Venom:

You can ensure that any new file you create from within Venom is contiguous either by

Deleting all existing files in the Flash Filing System

Compacting the Flash Filing System

 - before creating the new file

After deleting or compacting, any new file you create will occupy contiguous memory blocks. If

You fully finish creating one file before starting to create the next

You don't delete any files.

Notes

To compact the filing system use the FileSystem.Adjust message.

Files that were contiguous before compaction will remain contiguous after compaction. The
compaction process simply moves file data down in memory to fill empty blocks from the blocks
immediately above.

Be careful to delete any file before compaction that has a name you might re-use after
compaction.

You can test if a file is contiguous: if the file has a non-zero address then it is contiguous. Use
FileSystem.Address.

236FileSystem

Copyright © 2009-2021 Venom Control Systems Ltd

File data memory address

To get the memory address of a file's data use FileSystem.Address.

File

Please read about the FileSystem object before using files for the first time.

A file object controls a file in a FileSystem. A file is a sequence of data items of one of these
types:

8 bit unsigned integer

16 bit signed integer

32 bit signed integer

32 bit floating point

Text

Objects created with user defined Classes

Data can be written to the end of a file, and can be read in sequence from the beginning of the
file or from any selected point.

Any element of a file can be accessed by its numerical position in the file and read or changed.

Any file can be printed, in a format that depends on the data type, and a text file can also be
printed to.

The interface is designed to be as similar as possible to that of the Buffer object type.

Summary of messages

237 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Close

Element

Empty

Find

Get

Length

Name

[Open]

Put

Queue

Readpoint

Reset

Time

Help

Print To

Print

The Lock and Unlock messages can be sent to a file, however it is important to note that the
normal file access functions (e.g. get and put) ignore locks. Printing to or from a file always
locks it for the duration of the Print statement. If multiple tasks are writing formatted
sequences of data to the same text file, using a single Print statement for each unbroken
output record will keep it intact. For other file types, or where a single Print statement is not
possible, use the Lock and Unlock messages.

Note that one task may write to a file while another reads it without any need for locking at
all.

See also Locking in the Tutorial.

Creation

There is no Make or New for files. The only way to create a file (file reference object) is by
sending an Open message to a FileSystem object.

This is documented in FileSystem Open.

238File

Copyright © 2009-2021 Venom Control Systems Ltd

Close

Close

The file remains in the file system but is no longer associated with any variables that referred to it
and no messages can be sent to it.

Close is defined to be the same as Die, and vice versa. This allows you to use
AutoDestruct to close files automatically.

Closing a file updates the file's directory entry with the file's size. If a source of current date and
time information is available, the directory entry is timestamped accordingly; if not the Venom
time value of 0 results in a timestamp of 01/01/1990 00:00:00.

On MMC/SD cards, closing a file also results in buffered unwritten data being written to the
physical media.

Time Source

The VM2's internal clock-calendar function is used as the source of time and date information. If
the VM2 has a connection to the internet, the internal timer can easily be synchronized to
accurate internet time servers.

Element

Element(Int Elementnumber) Any

<File>.(Int Elementnumber) Any

Sets or returns a single data element of the file.

For a text file the value is treated as an integer.

The file starts at Element 0.

It is relevant to know that in a text file created by Print To, a line break takes up two character
elements (CR=13 and LF=10).

Empty

Empty

Removes all the data in the file, leaving read and write pointers at zero. The file is then in the

239 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

same state as if it had been newly created.

Find

Find(String or Buffer pattern [, Int startpos [, Int
uncased]]) Int

Searches a text file for a string supplied either as a fixed string or as the contents of a text buffer.

Find returns an integer showing the element position of the beginning of the first instance of the
search pattern if found, or -1 if not found.

The search starts at the character position startpos in the file if specified, or else at the
beginning of the file which is equivalent to a startpos value of 0.

If uncased is defined as 1, the search is case-insensitive.

The search pattern has a maximum size limit of 255 characters.

The Boyer-Moore search algorithm is used, which is very fast, especially with a long search
pattern.

Get

Get reads data from a file. Single values or multiple values may be read.

Reading single values from a file

Get Any

Get returns a value from the current read point in the file and advances the read pointer to the
next element. It is an error to attempt to read past the end of the file. (See Queue Message for
how to avoid this)

The type of data returned is:

Integer for all types of integer file

Float for a float file type

Integer value of a single character for a text file

Note that a text file created with Print To and containing line breaks will return the
sequence 13, 10 at the line breaks (ASCII CR and LF).

240File

Copyright © 2009-2021 Venom Control Systems Ltd

Reading multiple values from a file

Reading Arrays

Get(Array a[, Int n]) Int

Where a is an array of the same data type as the file, this will read data from the file into the
array. The transfer stops when either the end of file or end of array is reached. The optional
parameter n limits the number of elements transferred. The file ReadPoint is left pointing to
the next element after the last transferred, if there is any data remaining in the file.

The value returned is the number of elements transferred.

A runtime error is thrown if the array and file types do not match.

Reading Strings (lines of text)

Get(Str s) Int

Efficiently reads a line of text from a file into a String object. This method is much faster than
reading one character at a time.

Any previous string contents are overwritten.

The returned value is the length of the string.

ASCII CR (13) in the text is ignored and not copied to the string.

ASCII LF (10) in the file is treated as a line terminator and not copied to the string.

All other values including control characters are copied to the string.

If the line is longer than the String object's capacity, the string is filled to capacity and the next
file Get will continue from the next character on that line.

Reading Classes (records)

When the first parameter to Get is a user-defined Class object, Get reads a record out of
the file and loads this into the target object.

Choice of Binary or Text formats

Records may be stored in files in binary or text formats.

Binary format records

Get(Class obj) Int

Get will read the file and load the target object from the binary data it reads.

The exact binary format is not specified here, but in general the Class used to read a record out
of a file must be exactly the same as the Class that was used to write it.

241 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

To write a record to a file in binary format use Put. You can find the length of a record before
you write an object to a file using the Length message.

Here is an example of some code to write and read back a record in binary format.

Class Record
 a Int 8
 b Int 16
 str New String(30)
End

rec := New Record(1,2,"Three")
file.Put(rec) ; Write the record to a file.
file.Get(rec) ; Read a record out of a file.

Text format records

Get(Class obj, String format_string)

If a second parameter is supplied to Get then a text format is specified. There are two text
formats supported currently:

1. If the second parameter is "INI", it means use INI file format.

2. Otherwise use CSV format; the format string specifies the CSV separator character - usually
a comma.

For example:

file.Get(record, "INI") ; read INI file format
file.Get(record, ",") ; read comma-separated data

INI file format

In INI file format, records are expected to be listed as in the example below, where two records
are listed, along with header lines in square brackets that delimit and optionally identify each
record.

[Person1]
Name="Jim"
Age=42
[Person2]
Name="Fred"
Age=56

When reading a record in INI file format

Member names are not case sensitive.

If a member value occurs more than once then it will be over-written with the last value

242File

Copyright © 2009-2021 Venom Control Systems Ltd

seen.

Members that are not read retain their original value.

Array elements are listed in comma-separated-value format, with a \ to indicate
continuation on the next line.

Strings are in double quotes; no escape characters are supported currently.

Lines starting with ; or # are treated as comments and ignored.

Member values will be read until the end of the file, or a line beginning with [, is seen
(the next record's header line). The file is 'rewound' so that the [is the next character to
be read from the file.

It is the responsibility of the Venom programmer to read, process and interpret the
header lines.

Get returns the number of members it read.

Creating INI files

If you Print a Class to a file using "INI" as the format specifier then it will be printed in INI file
format. Header lines must be printed explicitly before each record.

Data errors in INI file format

If you pass a third, non-zero, parameter to Get then it will throw a "Script/Data
error" if

A non-existent member name is seen

A member is of a type that can't be represented in an INI file

An array overflows

For example:

n := myfile.Get(p,"INI", True) ; read the object data, throwing errors.

CSV Format

When reading a record in CSV file format

No member names are included - member data must be listed in the order it occurs in
the Class.

Each record occupies exactly one line in the file.

Strings must be inside double quotes.

Array or String overflows will result in a runtime error.

Creating CSV files

You can create a CSV file by printing user-defined Class objects to a file using the format

243 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

specifier string that contains the separator character.

Length

Length Int

Returns the length of the file in elements of the file's specified type.

For text files, this is the number of characters, counting each line separator as the two characters
CR, LF.

Name

Name(str s [, Int modifier])

s string variable into which to copy the file name

modifierSelect which part of name to copy:

0 (default) full path and name

1 - omit path

2 - only copy the "file type" extension i.e. the last '.' and the charcters following it

Copies the file's full directory path and name to a string variable.

If the string variable is not long enough to hold the file name, the name will be truncated.

A file name can never be longer than 260 characters.

N.B. This is a change from previous behaviour and syntax of this message.

You cannot rename a file this way: use FileSystem Name message for that.

Example

To print a file's name:

-->Make s string(260)
-->f := fs.open("dir1/test.txt", Char)
-->f.name(s)
-->print s, CR
dir1/test.txt
-->f.name(s, 1)
-->print s, CR
test.txt
-->f.name(s, 2)
-->print s, CR

244File

Copyright © 2009-2021 Venom Control Systems Ltd

.txt
-->

[Open]

Files do not have an Open message. Instead, files are opened by sending an Open message to
a FileSystem object.

 See FileSystem Open

Put

Put(Any value) Int

The data type of the parameter general has to match the file type. Integer values must be written
to a file of one of the integer types. Values will be truncated if necessary to the size of the file
data type. For the floating-point file type, the value must be a floating-point type.

The data is appended to the end of the file.

For a text file, the data can be a single character, fixed string or an entire text buffer whose length
must not exceed 256 characters.

Putting Arrays

You can Put data from an Array when it has the same data type as the file.

Put(Array a, [Int start, Int count])

Optional parameters specify the first element to copy and the number of array elements to be
transferred.

The default action is to copy the whole array.

Putting classes (records)

You can use user-defined classes to write 'records' to a file.

Binary format

You can Put an object of a user-defined Class to an 8-bit integer file. A binary record
representing the object is written to the file. For example:

rec := New Record(1,2,"Three")
f.Put(rec)

The Class-default message Length (sent to the record template object) gives the number of
bytes the object will require to be stored as a record in the file.

The record may be retrieved using Get.

245 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

INI file or CSV format

If you want to use a text format (either CSV or INI file) for storing records then you should Print
the class to a text file, e.g.:

Print To f, myClassObj:",", CR

Queue

Queue Int

Returns the number of elements remaining to be read from the file. For a text file, an element is a
single character.

Readpoint

Readpoint Int

Gets or sets the point at which the next Get message will read data from the file. The file starts at
position 0.

Reset

Reset

Resets the read pointer to the beginning of the file.

This is equivalent to f.Readpoint := 0.

Time

Time Int

Returns or sets a time value in seconds, compatible with the DateTime and RealTimeClock
objects (i.e. time in seconds since 00:00 on January 1, 1990)

The time value returned corresponds to the date and time when the file was created or last
modified.

Modification times are updated only when the file is closed or flushed.

If the real time clock hardware was not initialised when the file was created or last modified, the
returned value will be 0.

Note that to set the time and date successfully to a different value from the current time, this

246File

Copyright © 2009-2021 Venom Control Systems Ltd

must be done immediately before closing the file. Any further write to the file would cause
the current date and time to be applied at the time of closing the file.

 See also: File Close, Filesystem Flush

Update

Update

The File Update message updates the file length, time and date entries in the directory entry
for the file, as if the file had been closed and re-opened. The effects are as described below:

All Filesystems

fs.Length(name) and fs.Time(Name) will return the newly-updated values for the
file.

RAMdisk and Flash FileSystem

This will make a permanent update. If power is lost and the system is started up again and
creates the same file system, the directory information will be up to date with when the Update
message was last sent.

Relationship with Filesystem Flush Message

The Filesystem Flush message performs the equivalent of an Update on all files currently
open, before (where applicable) writing any blocks to the physical device.

Help

HELP file f

It is worth noting that the standard help message, which shows the type of a variable, additionally
shows the file name for a file variable.

Example

-->HELP a
It is a text file named "abc.txt"
-->

247 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT TO

Print To <File>, list

A text file can be the destination of a print operation. The print output is appended to the end of
the file in exactly the same way as by a series of Put messages.

When printing to a file, CR sends a CR LF (13, 10) sequence to the file.

 PrintF

PRINT

Print <File>[: Int n1[: Int n2 [: Int n3]]

Lists the contents of the file.

Text Files are displayed in their normal text format

Other file types are displayed one item per line.

If the colon(s) and format code(s) are present they are interpreted in the same way as when
printing buffers of various types:

File type 1st format parameter 2nd format parameter 3rd format
parameter

Text If positive, print first n1
characters of file

If negative, print last (-n1)
chars of file

Not present Not used

Text First char position in file to
print

Number of chars to print

Not used

Text “+” - print entire file adding
CR in front of any LF
encountered (UNIX ->
Windows conversion)

Not present Not used

All Integer
types

Minimum field width
(number of characters to
print per number)

Not used Not used

Float Minimum field width Number of decimal
places

Exponential format

248File

Copyright © 2009-2021 Venom Control Systems Ltd

In the FAT file system, a file opened as a directory can be printed. A numerical colon operator
can be used to control the display format in the same way as when .printing a FileSystem object

FTPClient

This object is an FTP (File Transfer Protocol) client which connects to FTP servers and can get
a server directory listing and send and receive files.

N.B. FTP is and old and widely supported protocol on the internet, but it is not secure. User
names, passwords and file data are transferred unencrypted and file transfers can be intercepted
in either direction.

The Venom FTP objects support a small but commonly used subset of the FTP protocol as
documented in RFC959.

See also TCP/IP Networking

FTPClient Messages and equivalent FTP Protocol commands

This is probably only interesting if you are already familiar with the workings of FTP.

Open USER

PASS

Get PORT or PASV

RETR

Put PORT or PASV

STOR

APPE

Remove DELE

Name RNFR and RNTO

Go CWD

Close QUIT

Print obj:0 PWD

Print obj:1 NLST

Print obj:2 List

The FTPClient object can request binary or ASCII file type. As both the Venom filesystem
convention and that of FTP ASCII transfer is to use CRLF for line endings there is no difference
in the processing at the Venom end, but the server may do ASCII translation of text from its
local system convention when ASCII mode is requested.

249 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Close

Debug

Get

Go

Name

Open

Put

Remove

Timeout

Print

Creation

Make <object> FTPclient([Int mode]])

Parameters

mode 'A' for active, 'P' (default) for passive - determines the mode for opening the
data connection

Active and Passive Modes

When the data connection is opened, it can be initiated from either the server end or the client
end.

The terms Active and Passive are from the server's point of view, so:

Active means the server opens a data connection to the client

Passive means the client opens the data connection to the server

Passive mode is used by typical web browsers and is appropriate if the client is behind a firewall
that restricts incoming TCP connections. Occasionally a server behind a firewall will need to use
active mode for similar reasons.

Port Numbers (Technical Note for Firewall Administrators)

If you are using a VM2 which makes ftp connections outside a LAN through a firewall, and
which for some reason must use Active mode, you may find it useful to know that the Venom
FTP client's PORT command will use data connection port numbers in the range 2000-3999, so
the firewall can be configured to allow incoming connections to those ports.

250FTPClient

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put(file f, str name [Int append]) Int

Parameters

f An open file to send

name Fixed string or text buffer with the name of the file to be created or replaced on the
FTP server (can include path)

appendIf present and non-zero, this requests the server to append the transmitted contents if
the named file already exists, instead of replacing the file

Returned Value

True (1) for successful transfer, False (0) for any failure.

Sends a file's contents to the server. By default the server replaces any existing file of the same
name with the new contents. If the append parameter is included with a non-zero value, the
new contents are appended to any existing file of that name on the server.

The data type for the FTP transfer is ASCII if the local file was opened as a text file, binary for
any other file type. This makes no difference in the VM2, but it might affect the way the file is
stored on the server: in particular, for an ASCII transfer a Unix-like server will use LF ("\n")
for line endings, while a Windows server will use the sequence CR LF ("\r\n") for line endings.

Close

Close

Closes the connection with the server, first sending an FTP QUIT command, then closing the
control TCP connection.

Harmless if FTP connection already closed.

Debug

Debug(Int Value)

Parameter

0 - no debug output

251 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

1 - display control connection dialogue

When debug mode is enabled, all commands to the server and responses back from the server
are displayed on the serial 1 terminal. This is useful when any FTP operation doesn't work, as
the server responses usually contain explanatory text.

Get

Get(file f, str name) Int

Parameters

f An open file in which to receive the file data

name Fixed string or text buffer with the name of the file on the FTP server (can include
path)

Returned Value

True (1) for successful transfer, 0 (false) for any failure.

Gets a file from the server, storing its data in the open file. Any existing file contents are replaced
with those of the retrieved file.

The data type for the FTP transfer is ASCII if the local file was opened as a text file, binary for
any other file type.

Go

Go(str path) Int

Parameters

path specifies new directory path

Return Value

True(1) if changed working directory successfully, false (0) if not.

252FTPClient

Copyright © 2009-2021 Venom Control Systems Ltd

Name

Name(oldname, newname) Int

oldname String or text buffer: contents must match the name of an existing file on the
server

newname String or text buffer containing the new name for the file

Returned value: True (1) if rename was successful, False (0) otherwise.

Renames a file on the remote server to a new name.

If newname matches an existing file on the server, that file is deleted before the other file is
renamed to it.

Note that this message is useful when updating a file on a server where a process on the server
may be reading the file at any time. By uploading to a temporary file and then using rename, the
update to the real file is a single instantaneous operation and the reading process will never see a
partially filled file.

Open

Open(site, str user, str password) Int

Parameters

site Integer or string IP address, or hostname. String can be fixed string or text
buffer

user fixed string or text buffer holding user name for logging in to FTP server

password fixed string or text buffer holding user's password

Return Value

True(1) for successful connection and login, false(0) if failed for any reason

Remove

Remove(name) Int

name String or text buffer containing name of file to be removed

Returned value: True (1) if remove was successful, False (0) otherwise.

253 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Removes a file or directory from the remote server.

Timeout

Timeout Int

Reads or sets a timeout value which is applied the the FTP client's control and data TCP
connections.

Default is 0, meaning no timeout limit is applied.

This will set a timeout limit for received data or for acknowledgements when sending data. By
default there can be a delay of over 3 minutes before a link is dropped because of lack of
response. In some cases, like a local area network, it is reasonable to assume that lack of
response within a few seconds indicates a non-responsive host; setting a lower timeout discovers
this condition faster.

PRINT

Print <FTPclient>

Prints [FTPCLIENT] followed by some state information

Print <FTPclient>:0

Prints the servers's current directory as a string, if a control connection is open

Otherwise prints a single question mark

Print <FTPclient>:1[:str path]

path optional string or text buffer specifying directory path to list

Prints a directory listing of the server's current directory or specified path.

The format of the listing is one file name per line separated by CR LF and is thus designed to be
usable by a program.

If the connection is closed, prints a single question mark.

254FTPClient

Copyright © 2009-2021 Venom Control Systems Ltd

Print <FTPclient>:2[:str path]

path optional string or text buffer specifying directory path to list

Prints a directory listing of the server's current directory or specified path

The format of the listing is server-dependent and designed to be human-readable.

If the connection is closed, prints a single question mark.

FTPServer

The FTP (File Transfer Protocol) Server object runs a server that requires no program input
from the controlling Venom program once set up.

It will work with any of the VM2's file systems.

The essential services of FTP are:

User authentication

listing directories

transferring files to or from the server

See also TCP/IP Networking

The following FTP commands are understood:

USER Login: user name

PASS Login: password

NOOP Null command for testing and suppressing inactivity timeout: returns "200 OK".

CWD Change working directory.

CDUP Change to parent directory.

PWD Print working directory.

QUIT Log off and disconnect.

PORT Client says which IP address and Port it is listening on (active mode FTP).

PASV Request Passive mode transfer.

TYPE File data type: Any type accepted. VM2 does not treat binary and ASCII differently as
its file system stores ASCII compatibly with FTP ASCII mode.

RETR Retrieve a file from server and transfer to client.

STOR Store content transferred from the client in a file in the server's file system, replacing any
existing file of the same name.

APPE Store content transferred from the client in a file in the server's file system, appending to

255 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

any existing file of the same name.

LIST List files in default directory listing format.

NLST List file names only separated by CRLF.

SYST Replies with "WIN32", which is a recognized OS name.

SIZE Size for a file, error message for a directory.

STAT Shows system status info: Venom version, logged in user.

RNFR Rename "from" file name.

RNTO Rename "to" file name.

DELE Delete file.

XCWD Synonym for CWD.

XPWD Synonym for PWD.

XCUP Synonym for CDUP.

See the description of the Run message for more details on how each command is handled.

The FTP server has been tested successfully with:

Unix and Windows command line FTP clients

SmartFTP (Windows graphical FTP client)

Mozilla Firefox

Microsoft Internet Explorer.

Limitations

The server doesn't allow clients to create directories

Only one connection can be handled per server object, but multiple Venom tasks can run
a server object each.

Only ASCII and binary types and the streaming mode are supported (but the alternatives
are rarely used)

Numerous less frequently used FTP commands are not supported

Summary of Messages

256FTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Debug

Go

Run

Print

Creation

Make <object> FTPServer(FileSystem fs, str name, str password [, str directory])

fs The FileSystem to use for file transfer operations.

name String or text buffer with valid username to log in to FTP server

password String or text buffer containing password required for successful login

directory Optional false root directory for FTP operations.

All file system content outside this directory is completely invisible to an
FTP client.

Default is root directory.

Both the username and password may contain wildcard characters: '?' matches any character,
and '*' matches any string.

If a false root directory is specified, it must exist on the file system.

 See Run description for more notes on false root directory and server operation

Memory Usage

Creating an FTPServer object uses about 2430 bytes of memory.

A file or listing transfer opens another TCP connection which uses approximately 5k.

TCP/IP and file system activity also use unpredictable amounts of memory temporarily.

Debug

Debug(Int mode)

mode 0 - no debug (default)

1 - enable debugging output

257 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

When debugging output is enabled, the ftp object sends to serial port 1 a message describing
every command received and every response sent back to the client.

A typical sample of output looks like this:

ftp: sending response: 220 VM2 FTP server

cmd: "USER vm1" : USER

ftp: sending response: 331 OK, send password

cmd: "PASS secret" : PASS

ftp: sending response: 230 Logged in

cmd: "PASV" : PASV

ftp: sending response: 227 passive 172,16,1,150,15,132

cmd: "List" : List

ftp: sending response: 150 Opening data connection

ftp: sending response: 226 List done.

cmd: "SYST" : SYST

ftp: sending response: 215 WIN32

Run, Go

Run[(Int time)]
Go[(Int time)]

time Number of milliseconds to run

Runs the server for the specified number of milliseconds. If no parameter is given, runs the server
for ever.

Go is a synonym for Run.

If a file transfer is requested during the period specified, the Run message does not return until
the file transfer has been completed.

While the server is running, one user at a time may log in and perform file operations. To enable
simultaneous access by more users, separate ftp server tasks can be created.

258FTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Notes on FTP

Notes on Supported FTP Commands

The full details of these commands, their parameters and response codes are documented in
RFC959 "File Transfer Protocol". The descriptions below summarize the set of commands
supported by the VM2. In practice you should not need to know these details as you should be
able to use the FTP server with many existing FTP client programs (including web browsers that
can handle FTP), but if anything goes wrong, the information below may help to diagnose the
cause.

If the FTP server was created with a false root directory, all references to the filesystem's
directory structure are relative to that directory. E.g. if the filesystem has a directory "/ftp"
which is used as a false root, an ftp request for "/file1.txt" will access "/ftp/file1.txt"
on the file system. When the FTP current working directory is "/" it would be "/ftp" on the
file system, and the FTP command "CWD .." or "CDUP" at that point would not result in a
change of directory.

Use of a false root directory is recommended for any system connected to the internet as it
protects all files outside that directory from any malicious user that has gained ftp access.

USER, PASS

These must be sent in the correct order and with the correct user name and password. As a
measure against brute force password guessing attacks, a series of failed logins causes a
response delay whose length increases with each failure. After 1 minute of failed login attempts
or inactivity the control connection is disconnected and the failure response delay reset to 0.

When the FTPServer object is created, both user name and password can be specified with
wildcards. '?' matches any character; '*' matches any string.

NOOP

Can be used by an FTP client to check that the server is listening or to prevent an inactivity
timeout.

Only works when logged in.

Response is 215 OK

259 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

CWD dir

XCWD dir

A directory name beginning with '/' is taken to be an absolute directory.

Otherwise it is a subdirectory of the current directory.

The special string ".." is interpreted as "change to parent directory". It is accepted but has no
effect when used in the root directory.

CDUP

XCUP

Equivalent to CWD .. or XCWD ..

PWD

XPWD

Print working directory. The FTP root directory is the root of the file system.

"/" is shown as the root directory.

QUIT

Disconnects the control connection, allowing another incoming connection and login to start.

PORT <text> h1,h2,h3,h4,p1,p2

Indicates that data transfers are to be carried out in active mode. When a data transfer is
requested the server will connect to the IP address and port specified by the numbers h1-h4 and
p1, p2.

PASV

Causes the server to send a response detailing the IP address and port number on which it will
listen for data transfers, and to set up a listening (passive) TCP connection when a data transfer
is required.

The IP address will be the same as used for the control connection.

The port number will be in the range 2000-3999.

TYPE x

Specifies file data type. x is usually 'A' for ASCII or 'I' for Image (binary). The server
accepts any value, but as the format for storage of ASCII text in files on the VM2 is the same as
the format for ASCII mode FTP transfer, no special processing is required for either data type.
The command therefore has no effect but produces a response

260FTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

200 TYPE OK

RETR filename

Retrieve a file - the file is sent to the client. The filename my be a simple name for a file in the
current directory, a full path starting with '/', or a relative path from current directory.

STOR filename

Stores a file from the client in the location and name specified. The filename and path are as for
the RETR command. If a file with the same name existed, it is overwritten.

APPE filename

Like STOR but if a file with the same name exists, the data from the client is appended to the
file.

List filespec

For a FAT filesystem, filespec may be:

a directory

a directory followed by a wildcard file specification

a wildcard file spec only

The returned data is a list of files in UNIX "ls -l" format, because this format is expected by
semi-automatic clients like web browsers.

The filesystem Print message is used for this function.

 See FileSystem (FAT) Print.

NLST filespec

Produces a list of file names only, separated by CRLF. For the FAT filesystem, filespec can be
used and can contain directory path and wildcards.

RNFR filespec

RNTO filespec

These set up source and destination names for a file rename operation. RNFR must be sent first
and followed by RNTO with no intervening command. Either filespec can be a full path
(starting with '/') or a name within the current directory, and can be the name of a file or
directory. If the "to" and "from" paths are different, the file or directory is moved to the new
position in the directory structure.

261 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

DELE filespec

Deletes a file. If filespec refers to a directory, all its files and subdirectories are deleted too.

SYST

Produces the response

215 WIN32

The response has to be a recognized string as defined in the IANA "assigned numbers"
document and also needs to be one likely to be recognized by web browsers. "WIN32", whilst
wildly inaccurate, at least correctly reflects the capabilities and limitations of the FAT file system
used in the VM2 and is likely to be widely recognized by ftp client programs.

SIZE

For a plain file, produces the response

230 nnnnn

Where nnnnn is the file size in bytes.

For a directory, the response is:

550 Not a plain file.

This information seems to be used by some clients (e.g. web browsers) as an ad hoc way of
guessing whether a name in a directory listing is a plain file or a subdirectory.

Timeouts

Any inactivity of more than 60 seconds, or failure to login successfully within 60 seconds, causes
the control connection to be disconnected.

No file data transfer timeout is currently defined.

GraphicsLCD

GraphicsLCD manages text and graphics on many types of graphical LCD displays.

It supports

Colour and monochrome displays

Several built-in fonts, both proportional and monospaced

User defined fonts - font conversion utilities are provided on our website

Word wrapping

Text justification (left, right and centred)

Bitmap images

262GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Graphical primitives (lines, rectangles, 3D relief boxes, etc.)

Where to look first

To make the most of the GraphicsLCD object see TextBox and the print keywords, as they are
central to almost everything you will do.

We also show example Graphics LCD code on our website.

Most applications for the GraphicsLCD also use a touchscreen. Please see the Touchscreen
object.

Indirect update

In order to optimise the speed of creating and modifying images on the LCD device, graphic
primitives (lines, text, etc) to be drawn are first written to an internal 'scratchpad' RAM area.
This image buffer is only transferred to the actual display device when the Update message is
called. Update will try to optimise the process by only updating parts of the image that have
changed.

Summary of messages

Make

Bitmap

Box

FontData

Format

Line

Off

On

Pen

Reset

TextBox

Update

Xpos

Ypos

Print To

Creation

The GraphicsLCD object can drive many different graphical display devices. Devices are
divided into two major types:

1. TFT devices driven by VM2D or VM2-D2

263 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

2. Other devices, driven by VM2

Graphic displays on VM2D and VM2-D2

Make <object> GraphicsLCD (<Array(Int 16)> parameters)

The parameters to configure the onboard TFT driver are passed as an array of 16 x 16-bit
integers to allow the flexibility to drive different displays.

The parameters are listed in the table below.

264GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Eleme
nt

Parameter name Comments

0 Display driver
type

1 = VM2D; 2 = VM2D2.

1 Display width The width of the display in pixels, e.g. 640 for VGA.

2 Display height The height of the display in pixels e.g. 480 for VGA.

3 Rotation Rotation of the display. 0 = no rotation, 1 = 90 degrees, 2 = 180
degrees, 3 = 270 degrees.

4 Frame rate The frame rate in Hz. Typically 60.

5 Horizontal cycle The total number of clock pulses in a display line, including blank
periods.

6 H. blank period The blank period from the start of the H sync pulse to the first display
data (pixel clock units).

7 H. sync pulse The horizontal sync pulse width (pixel clock units).

8 Vertical cycle The total number of horizontal lines in a display frame, including blank
periods.

9 V. blank period The blank period from the start of the V sync pulse to the first display
line (in horizontal lines).

10 V. sync pulse The vertical sync pulse width (in horizontal lines).

11 Signal Polarity
bit flags

The polarity of various signals. Use 0 for most displays.

The meaning of each bit when set:

Bit 2: PCLK clocks data on +ve edge.
Bit 1: HSync pulse active high.
Bit 0: Vsync pulse active high.

12-15 Reserved Reserved for future expansion - please set to zero.

The diagram below shows how the parameters in the array relate to the display signal timings.
The horizontal and vertical timings have similar characteristics, so one diagram shows both.

265 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

H/V Pulse width

H/V Blank period
Display width/height

H/V Cycle

Display
data
signals

Sync or
DE signal

Some datasheets specify timings such as back porch and front porch. The usual relationship
between these parameters and the timing values we use is:

Cycle = display width/height + sync pulse + back porch + font porch.

Blank period = sync pulse width + back porch

Example

MAKE g GraphicsLCD(StandardVga) ; Make the LCD object.
...

; Parameters for standard VGA TFT display.
Array StandardVga (Int 16,16)
 1, ; Display driver type.
 640, ; Display width
 480, ; Display height
 0, ; Rotation.
 60, ; Frame rate.
 766, ; Horizontal cycle
 100, ; Horizontal blank period
 30, ; H Sync Pulse - can be short in DE mode
 525, ; Vertical cycle
 35, ; Vertical blank period
 3, ; V Sync Pulse - can be short in DE mode
 0, ; Reserved, set to zero.
End

266GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Graphic displays on VM2

Make <object> GraphicsLCD (Int type)

Parameters

type: the lcd controller type. See the table below for the display types supported.

Example

Make glcd GraphicsLCD(3) ; ST7565R-based display.

Currently supported displays

If the display you want to use is not listed here please contact us - we may be able to write
a driver for it free of charge.

Type
External Display
Controller Display device Display resolution Comments

1 None QVGA TFT 320 x 240 Requires VM2D.

3 ST7565R 128 x 64 Requires standard
VM2

4 ILI9325C MCT024D12TW2
40320PML

240 x 320 Requires standard
VM2

5 ST7565R - via SPI
bus 1

Electronic
Assembly
DOGL128-6

128 x 64 Use SPI Bus 1 on
VM2 or VM2D;
SPI1_MISO is
used as A0 signal.

6 As above - via SPI
bus 2

As above As above Use SPI Bus 2 on
VM2 or VM2D;
SPI2_MISO is
used as A0 signal.

7 T6963C Any T6963C based
display with 128x64
pixels

128 x 64 Requires standard
VM2

8 T6963C Any T6963C based
display with
240x128 pixels

240 x 128 Requires standard
VM2

267 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The amount of memory used is dependent upon the display size. One bit of memory is taken
for every bit in the display, plus a few Kbytes. For example, a 16-bit-per-pixel, QVGA
display (320 x 240 pixels) takes around 154 K Bytes.

Error messages

If the object detects the appropriate hardware is not present then you will get a runtime error
message such as Device Not Found or Feature not supported.

Bitmap

Drawing bitmaps

There are two main ways to draw a bitmap image on to a display:

1. Use the Bitmap message to draw a bitmap at a position relative to the current TextBox.

2. Print the bitmap as part of some text output. See here.

We deal with drawing bitmaps directly into a TextBox here.

Bitmap(Int bitmap_ref, Int x, Int y)

Parameters

The x and y coordinates specify the position of bottom left-hand corner of the bitmap, relative
to the current TextBox origin. Note: the bitmap isn't confined to the TextBox area.

bitmap_ref is usually the memory address of the bitmap image. If the bitmap data is contained
within an Array or a file in the Flash Filing System then you can use the Address message to get
the address of the bitmap. For example:

lcd.Bitmap(ffs.Address("myimage.vbm"), x, y)
lcd.Bitmap(myarray.Address, x, y)

Note: bitmap_ref can also be the bitmap number registered with the GraphicsLCD object.

Bitmap data formats

There are two major bitmap format families supported currently

1. The Windows Bitmap format (BMP files)

2. Venom Bitmap format (VBM files)

Bitmap images may be defined in Venom Arrays, but large bitmaps are best defined in Windows
or Venom Bitmap files (extension .BMP or .VBM) loaded into the Flash File System. Note that
the file data must be contiguous.

268GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Comparing file formats

Windows Bitmap (.BMP)

This is the most convenient format to use, because many graphics programs support it.
However this format takes more space in the file system and is slower to plot.

The 32 bits-per-pixel variant supports transparency, so images with rounded corners or edges
display better.

See below for useful macros.

Note: Currently only the 24 bit per pixel RGB and 32 bits per pixel ARGB sub-formats
of BMP are supported.

Venom Bitmap (.VBM)

The native Venom bitmap file format (VBM) takes less space in the memory or file system, is
faster to plot, but it's not as convenient as the Windows BMP format. Also the VBM format
doesn't currently handle transparency well. Our website has a utility you can download to
convert BMP files into the VBM format.

See below for useful macros.

Details of the VBM format

Note: we supply a utility that can convert Windows bitmaps to Venom Bitmaps - you can
download it from the Resources page on our website.

Monochrome Venom Bitmaps

One-bit per pixel Bitmaps may be drawn on both monochrome and colour displays

They will draw in the current display foreground and text background 'colours', just like
printing text: binary '1' bits in the bitmap image draw in the foreground colour and Binary '0' bits
draw in the background colour.

A transparent foreground or background can be used. On a monochrome display the pen
colour 'INVERSE' can also be used.

 See Pen for more information on foreground and background colours.

Colour Venom Bitmaps

Colour bitmaps use 16 bits of colour data per pixel. They can only be drawn on 16 bit per pixel
displays.

Colour bitmaps can have transparent areas. These are defined by enabling Transparency and
assigning a transparent 'colour' value in the bitmap header. Pixels with this value 'colour' aren't
drawn on the display, but instead the original display shows through. The transparent 'colour'
can be defined uniquely in each bit map and can be any 16 bit value. For example you might
decide to use the value $FFFF as your transparent 'colour', if you knew that $FFFF was not
used for any real colour in the bitmap. If you need to set a transparent colour in a bitmap, then

269 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

the 'transparency flag' must be set in the bitmap data.

Note: This is different to the TRANSPARENT 'colour' you can set for any of the Pens.

The bitmap data is usually supplied in the form of a file (in the Flash Filing System) or an Array.
The data format is as follows:

bitmap width in pixels - 16-bit value

bitmap height in pixels - 16-bit value

bitmap colour depth in bits per pixel (e.g. 1 or 16) - 16-bit value. If bit 8 is set then
Transparency is enabled.

'Transparent' colour - the colour value in this bitmap assigned to be transparent if
Transparency is enabled.

Bitmap data - in rows of bytes or 16-bit words

o For1 bit-per-pixel bitmaps: the MSBit of the byte appears on the left, and the LSB on
the right, in the image

o The first byte or word of the data is at the top-left of the image.

o The next byte or word continues across the top of the image, until the end of the first
line.

oA 1bit-per-pixel image is left justified in the data if it doesn't have a pixel width that is a
multiple of 8.

o If the Array is of 8-bit values then remember that all the values above are 'little endian'
- i.e. the Least Significant Byte comes first.

(All 16-bit values are Little Endian - ie. least significant byte first).

The following example sets a couple of bitmap images:

; Bitmap for the tick that says a tickbox is selected.
Array tick(8)
 $06 ; 6 pixels wide
 $00
 $06 ; 6 pixels high
 $00
 $01 ; 1 bit per pixel
 $00
 $00 ; [No transparent 'colour' in mono bitmaps]
 $00
 %00000100 ; The bitmap data...
 %00001100
 %00011000
 %10110000
 %11100000

270GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

 %01000000
End

If you are creating 1-bit-per-pixel bitmaps in an array by hand it's often useful to use the binary
notation (e.g. %10101010) within 8-bit data Arrays.

; Bitmap to illustrate colour and transparency.
Array image(16)
 6 ; 6 pixels wide
 7 ; 7 pixels high
 16 + %100000000; 16 bits per pixel, transparency needed.
 $8000 ; The colour we will use here as 'transparent'.
 $8000,$8000,$3974,$3974,$8000,$8000,
 $8000,$3974,$3974,$3974,$3974,$8000,
 $3974,$3974,$6342,$6342,$3974,$3974,
 $3974,$3974,$6342,$6342,$3974,$3974,
 $3974,$3974,$3974,$3974,$3974,$3974,
 $8000,$3974,$3974,$3974,$3974,$8000,
 $8000,$8000,$3974,$3974,$8000,$8000
End

To init
 Make glcd GraphicsLCD(2)
 glcd.Bitmap(0) := tick.Address ;Register bitmap 0
 glcd.Bitmap(1) := image.Address ;Register bitmap 1
 Start Every 100 glcd.Update ;task to update display
End

To main
 glcd.Bitmap(0,30,30) ;plot bitmap 0 at position (30,30)
 glcd.Bitmap(1,50,30) ;plot bitmap 1 at position (50,30)
End

Macros

Useful macros for Windows bitmaps

#Define IS_BMP(ADD) (??(ADD) = $4D42) ; Is BMP format.
#Define BMP_W(ADD) ??(ADD + 18) ; BMP width
#Define BMP_H(ADD) ??(ADD + 22) ; BMP height

The ADD parameter is the address of the bitmap in memory.

Useful macros for Venom bitmaps

#Define VBM_W(ADD) ??(ADD) ; VBM width

271 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

#Define VBM_H(ADD) ??(ADD+2) ; VBM height

See also Array.

Box

Box (Int x, Int y, Int dx, Int dy [, Int border])

Draws a box on the display with an optional border. The box area is filled with the current fill
Pen, which can be 'TRANSPARENT'.

The first two parameters (x, y) specify the pixel coordinates of one corner of the box, and the
second two parameters (dx, dy) specify the size of the box in pixels relative to (x, y); dx and/or
dy may be negative.

The optional border specifies the type of border to use - see below. If the border parameter is
not present or is zero no border is drawn.

Box Borders
There are three major border types: 'Flat', '3D' and 'rounded corners'

Flat borders

Flat borders are simply one or more lines drawn around the Box with the current foreground Pen
.

The flat boarder styles are based on binary patterns. E.g.%101 would produce a border
consisting of 2 black lines separated by a white line. The least significant bit (bit 0) controls the
outermost border line.

 The largest flat border number is 255 ($FF)

3D borders

3D borders are arrangements of lines drawn in shades of (normally) grey, to give the impression
of a raised or lowered region, or a region bounded by a groove. The colours used to draw
these are given by the Pen message.

These borders are generally intended to be used against a background of light grey, and the box
is generally filled with light grey. Some borders can also work well filled with white or another
light colour.

272GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

The border types are given in this table, and an idea of what each border looks like is shown in
the image below.

Border name Border number
code

Example usage

Raised Button $100 For dialogue box buttons (Currently the same as $102)

Lowered Button $101 For dialogue box buttons when pressed. (Currently the
same as $103)

Raised 2 pixels $102 For dialogue boxes

Lowered 2
Pixels

$103 For text boxes, tick boxes, etc

Groove $104 For separating out a panel within a dialogue box

Raised 1 pixel $105 For separating out a panel within a dialogue box

Lowered 1 pixel $106 For separating out a panel within a dialogue box

Rounded Corners

These consist of a 1 pixel outline in the current foreground (Pen 0) colour, with rounded corners.

This type of border is selected by a value of $200 + r, where r is the radius of the corners and
have a maximum value of 255.

The radius cannot be greater than half the width or height of the box, and is automatically
reduced if too big, resulting in a circle if the original box was square.

273 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

See also Pen

Format

Format (Int index) := Int n

Format

Format allows you to set various formatting options for printing to the GraphicsLCD.

Form
at

inde
x

Formattin
g applied

Description Value range Def
ault
val
ue

Reset
conditions

(Reset to
default
value)

0 Word
wrapping

When this is 0 (off) each line of text is
clipped by the TextBox.

If it is non-zero (on) the text word-
wraps inside the TextBox.

0 or non-zero 0 TextBox
message

1 Explicit
CR depth

If this is non-zero then CR will drop the
cursor n pixels independently of the
current font's size.

0-255 0 TextBox
message

2 Print at
monospac
e pitch

If this is non-zero then text will print
with each character centered inside
monospaced 'cells' n pixels wide. This
can be useful for printing columns of
numbers or spacing out text.

This feature does not work with the
newer anti-aliased fonts (font format 5,
see FontData).

This feature is not usually needed if
the numeric characters in a font are
already set in cells of constant
width, which is true for many fonts
including the internal fonts in the
later releases of Venom.

0-32 pixels for
colour displays.

0-24 pixels for
monochrome.

0 TextBox
message

274GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

3 Backgroun
d padding

When the text background colour is
not transparent, a rectangle of the
background colour is drawn, over
which the text is printed. This format
value specifies how many pixels the
background rectangle extends beyond
the text in all directions.

0-255 0 TextBox
message

4 Tab
spacing

This sets the spacing between tab
positions in pixels. When a tab
character is printed to the display the
cursor moves to the right, to the next
available tab position. Tab positions
are measured relative to the left hand
side of the current TextBox, or the last
explicit cursor movement (GotoXY,
Htab, Vtab, Home, ...)

0-255 10

5 Set up
capture for
position of
Nth
character

This sets a counter so that when the
given number of characters have been
printed to the display, the position of
the Nth character is captured and later
available in the properties Xpos and
Ypos.

16-bit signed Format
(5) := -

1

TextBox,
CLS,
Home

obj.Format(0) := True ; turn on word wrapping.

Resetting Format options

If you send the Format message with no parameters then all the default values are re-applied.

obj.Format ; Reset all Format options.

All format options are also reset on the next TextBox message.

Rotated display

You can rotate the whole display on some devices. See here: Rotated Display.

275 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

FontData

FontData (Int Font_no) Int memory_address
FontData

The FontData message allows extra fonts to be registered with the GraphicsLCD object, in
addition to, or instead of, the embedded 'system' fonts.

The Font Manager built into VenomIDE can convert TrueType fonts into the VAF format used
in Venom.

Parameters

Font_no is the new font’s font number. It must be in the range 0-255. You can overwrite
the system font numbers (0, 1 & 2) if necessary.

memory_address is the address (in memory) of the font data. This data is usually held in a
file in the VM2's flash filing system, where the address of the data may be found using the
Address message.

Reading FontData returns this address, so it is possible to 'move' the system fonts to new
font numbers.

Example

glcd.FontData(3) := flash_file_system.Address("MyFont.vaf") ; font held in a file.

 Note: if the font data file is not found then 'address' returned will be zero; in that case
system font 0 (the smallest) will be substituted so you can still see the text.

Revert to internal fonts

When the FontData message is sent with no parameters it clears all the fonts that have been
registered and defaults back to the embedded 'system' fonts.

This may be useful when updating font files during a firmware update process, during
which time the font files will cease to exist, and attempting to print them will result in a
runtime error.

Example

glcd.FontData ; Revert to internal fonts.

Up to 256 fonts can be registered, numbered in the range 0 - 255.

For a detailed description of the font data formats used see here.

276GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Font data formats

This information is provided for completeness - you don't need to know this if you use our
font conversion utility.

Here is a description of the 'Venom' bitmap font formats used in Venom2:

Header for Font types 4, 5 and 6

The first 10 bytes are a 'header' that lists general data about the font. After this are the character
map (that indexes each character in the font), and the font bitmap data itself.

Byte # Function

0 Font data format: 4: Proportional, 5: Monospaced, 6,7,8: Anti-aliased (VAF
format)

1 Font character width, this value is only used in Monospaced fonts, though it may
be present in proportional font data converted from other formats.

2 Font height (Total number of pixel lines in a character)

3 ASCII code of first character defined in the font (in the range 0-255, often 33: '!')

4 ASCII code of last character to be defined in the font (in the range 0-255)

5 Ascent: Number of pixel rows above the baseline pixel row. The baseline is the
pixel row above any decenders in the font.

6 Inter-character gap: Number of pixels between each printed character. Only
necessary where there are no blank pixels included in each character.

7 Width of the space character in pixels – only used in proportional fonts.

8 'External Leading': extra lines above the font that are added to the font's height to
give more separation between lines on carriage return. Can usefully be set to 0.

9 - 11 Reserved value – set to 0

12
onwards

Character map & font bit-map data. This differs depending on the type of font.

Character map for 1-bit per pixel proportional fonts

Byte # Function

0 Character width in pixels.

1 Reserved – set to zero.

277 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

2 Character data offset - LSB

3 Character data offset - MSB

The character map allows each proportional font character to be found within the bitmap data.
Each map entry holds the character width and the offset of the bitmap data. The offset is relative
to the start of the array or file.

Because there is one character map entry for each character in the font, the offset for the bitmap
data for each character may be determined:

For a font in which 100 characters are defined, the first character bitmap has an offset of
10 + 4 x 100 = 410, or $9A, $01 as two bytes in hex.

Monospaced fonts have no character map - the header is followed directly by the font bitmap
data. in the same format as the bitmaps for Proportional font type 4. The width of every bitmap
is the value found in the font header (see above).

1-bit bitmap data

Each pixel in a character is printed as either the foreground or the background colour.

Each character is represented by a number of bytes - n x m - where n is the number of bytes in
a row, and m the number of rows.

The data is listed starting with the first row, and then each subsequent row follows.

Each row of pixels in a character occupy n bytes - where n bytes is big enough hold the pixel
width of the character, where 1 bit represents 1 pixel. With narrow characters only 1 byte is
needed per row.

The left-most pixel in a row maps to the most significant bit of the first byte in the row.

The number of rows in each character is given by the font height in the header listed above.

Any character set can be created in this way, although in the case of some (such as Chinese,
Arabic etc.) the characters created will not relate directly to the character code used to print
them. You can define any group of consecutive characters between 33 and 255.

Font Type 6, 7 & 8 - Anti-aliased Fonts

These fonts have a numerical value per pixel, which determines the proportion of background
and foreground in the colour of the pixel, from 0 for pure background to $ff (types 6, 7) or $3f
(type 8) for pure foreground. The fonts can be created from TrueType fonts using the Font
Manager built into VenomIDE. This type of font can create much better looking text than 1-bit
fonts, with smoother edges on curves.

278GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Character map for Anti Aliased fonts

The character map contains 32-bit values, least significant byte first. Each value in the map is the
offset (bytes from the start of the file) of the bitmap data structure for the corresponding
character.

Bitmap Data for font type 6

The Bitmap data for each character consists of a fixed format header followed by variable
number of pixel bytes.

Byte # Function

0 width of bitmap in pixels = width in bytes (unsigned)

1 number of rows of pixel data (unsigned)

2 Height of top row above cursor position (signed)

3 offset from cursor position of left edge of bitmap (signed, positive = right)

4 cursor advance in pixels, to next character (unsigned)

5 reserved, set to 0

6 + (rows x width) bytes of pixel data from left to right, top row first

Header for Font Types 7 and 8

As with types 4, 5 and 6, the first byte always identifies the font type.

Byte # Function

0 Font data format: 7: 16 bit metrics, 8: as 7 but with run length compressed bitmap
data

1 Unused; padding to align 16 bit data on even memory addresses.

2,3 Width: maximum width of any glyph (LS byte first)

4,5 Heght: height required to accommodate all glyphs

6 First code point in table

7 Last code point in table

8,9 Ascent above baseline, LS byte first

10, 11 Width of space char, LS byte first

12, 13 Extra leading; space between rows.

13,14 Padding to make header size of multiple of 4 for more efficient memory alignment

279 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

12
onwards

Character map & font bit-map data. This differs depending on the type of font.

Bitmap Data for font type 7, 8

The Bitmap data for each character consists of a fixed format header followed by variable
number of pixel bytes.

Element Length (in bytes) Description

width 2 unsigned Width of each row of pixel data, in bytes

rows 2 unsigned Number of rows of pixel data

top bearing 2 signed height of top row above cursor (baseline)

left bearing 2 signed offset of left edge from cursor

advance x 2 signed cursor x advance in pixels

advance y 2 signed cursor y advance in pixels

bitmap width x rows (type
7)

variable (type 8)

8 bit pixel data from left to right, top row first

(see below)

Bitmap (type 7)

Each byte corresponds to 1 pixel in the rectangular bitmap. The value shows the proportion of
foreground and background colour for that pixel: 0 is 100% background and 255 is 100%
foreground.

Bitmap (Type 8)

This data is run-length compressed.

The pixel values are 6 bit: 0 for 100% background, 63 for 100% foreground.

the top two bits of each byte determine the use of the remaining 6 bits:

Bit 7 Bit 6 Bits 5 - 0

0 0 0 - 64 representing 1 - 64 bytes of 100% background colour

0 1 0 - 64 representing 1 - 64 bytes of 100% foreground colour

1 0 fg/bg proportion for 1 pixel: 0 = 100% background; 63 = 100% foreground

1 1 Reserved

280GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Line

Line (Int x1, Int y1 [, Int x2, Int y2])

Draws a line from the end of the previous line to the display coordinates (x1, y1), or if the
optional parameters x2 and y2 are present, from (x1, y1) to (x2, y2).

The line is drawn in the current foreground colour (see Pen).

Note that (0,0) is the pixel at the bottom left of the display.

Coordinates outside the edge of the display are individually limited at the edge of the
display, i.e the gradient of the line is not preserved.

See also Pen

Off

Off

The GraphicsLCD Off message turns off the PWM signal generated by the VM2-D2 TFT
driver IC.

This PWM signal is intended for backlight control.

See also On

On

On
On (Int Width, Int Period)

The GraphicsLCD On message turns on the PWM signal generated by the VM2-D2 TFT driver
IC.

This PWM signal is intended for backlight control.

If On is called without parameters then the PWM signal is turned on at the maximum duty cycle
(255/256) at a default PWM period. This PWM period is equivalent to a frequency of about
250Hz when driving a typical VGA display. The basic PWM period is derived from the LCD
driver clock and so depends on the LCD parameter settings.

If On is supplied with parameters, the first parameter sets the duty cycle in the range 0-255 out
of 256, where 0 is off and 255 is maximum. The second, optional, parameter (in the range 0-
255) sets the period. A value of 0 gives the maximum frequency (minimum period). Period
values over about 10 (on a VGA display) may result in visible flickering of the screen.

281 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If the period parameter is omitted then the default value is used (see above).

See also Off

Pen

Pen
Pen (Int FGcol, Int BGcol)
Pen (Int pen_number) Int colour

The Pen message allows you to set the colour of each of the different 'pens' used in the display.

There are nine pens in all, but only the first three are likely to need changing frequently. These
three are the current foreground pen - used to draw text and lines; the current fill pen - used to
fill Boxes and TextBoxes, and the current text background pen - sometimes used to provide a
background for text.

Any of these pens may be set to 'transparent'. In particular, the text background pen is
automatically set to transparent when any TextBox is defined.

'Default' colours

The next two pens hold the default foreground and fill pen colours. The current foreground and
 fill pens are reset to these colours when CLS is used to clear the display.

'3D' colours

The last four pens are only used when drawing the 3D box borders and are usually left at their
default values.

Setting pen colours

You can set or read any of the pen colours using each pen's number, for example:

lcd.Pen(1) := RED ; Set the fill colour
fg := lcd.Pen(0) ; read the foreground colour

Quick setting

You can quickly set the foreground and background pen colours by using Pen with two
parameters, for example:

lcd.Pen(RED,BLUE)

Resetting

If you send the Pen message with no parameters then Pens 0 - 2 will reset to their default
values.

Pen(0) will be loaded with the value of Pen(3)

Pen(1) will be loaded with the value of Pen(4)

282GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Pen(2) will be set to Transparent.

For example:

lcd.Pen

Background colour

Setting Pen(4) is the best way to set the background colour for the whole display.

Pen(4) := BLUE_WASH

Pen
number

Name Usage Reset

0 Current Foreground
pen

Draw Text and lines Reset to Default Foreground
pen on CLS and Pen with no
parameters

1 Current Fill pen Fill Boxes and TextBoxes Reset to Default Fill pen on
CLS and Pen with no
parameters

2 Current Text
Background pen

Fill text and 1BPP bitmap
backgrounds.

Reset to the transparent
colour on TextBox, CLS and
Pen with no parameters

3 Default Foreground
pen

Sets the value of Pen(0)
when the display is cleared
with CLS

This is set to black on creation
of the GraphicsLCD object.

4 Default Fill pen &
background colour

Sets the value of Pen(1)
when the display is cleared
with CLS, also used as the
background colour when the
display is cleared.

This is set to light grey (in
RGB565) on creation of the
GraphicsLCD object.

5 Default dark grey for
3D borders

The dark shadow colour for
3D borders.

This is set to an appropriate
grey (in RGB565) on creation
of the GraphicsLCD object.

6 Default mid grey for
3D borders

The mid shadow colour for
3D borders.

As above

7 Default light grey for
3D borders

The light shadow colour for
3D borders.

As above

8 Default highlight colour
for 3D borders

The bright lines in 3D
borders.

As above

283 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Colours

Colours in Venom2 are represented by 32-bit integer values. The colours are different for 1 bit-
per-pixel displays and 16 bit-per-pixel displays - and are sometimes different between some 16
bit-per-pixel displays.

16 bit-per-pixel colours

For 16 bit-per-pixel displays the colours depend on the internal display controller data format.
One format, used in VM2D, is called RGB565 - where the colours red, green and blue are
packed into a 16-bit word with resolutions of 5, 6 and 5 bits each. The transparent 'colour' is
defined outside of the 16-bit range.

The following macros show how you can define colours:

#Define TRANSPARENT $10000

; Macro to help with colour declarations.
; (If the macro parameters are constant then this will evaluate to a constant)
#Define RGB(red,green,blue) (red << 11 + green << 6 + blue) ; This is for 'RGB565'

;Primary colours.
#Define BLACK $0000
#Define WHITE $FFFF
#Define RED RGB(31,0,0)
#Define GREEN RGB(0,31,0)
#Define BLUE RGB(0,0,31)
#Define YELLOW RGB(30,31,0)

;'Washes'
#Define BLUE_WASH RGB(16,16,31)
#Define YELLOW_WASH RGB(31,31,16)

Examples

g.Pen(0) := YELLOW ; Set foreground colour to yellow.
g.Pen(1) := TRANSPARENT ; Set fill colour to transparent.

One bit-per-pixel colours

The following macros represent 'colours' that may be used with 1 bit-per-pixel displays:

#define TRANSPARENT 0 ; Pixels are unchanted
#define BLACK 1 ; Pixels are set to 'on'
#define WHITE 2 ; Pixels are reset to 'off'
#define INVERT 3 ; Invert the pixel state.

284GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Reset

Reset

Not implemented yet.

TextBox

TextBox
TextBox(Int x, Int y, Int wid, Int hgt, [Int border,
[Int font, [Int padding,]]])

TextBox defines a rectangular area within which all subsequent text is printed - until another
TextBox is defined.

If word wrapping is turned off then the text is clipped (on the right) to fit the width of the
TextBox.

If word wrapping is turned on then the text will wrap on to subsequent lines so as to fit inside
the TextBox. Text will wrap at a space character, or in the middle of a word if there is no space
character.

Text is clipped at the bottom of a text box, though not at the top (so you can have text that is
displayed above the text box).

The first two parameters (x, y) specify the pixel coordinates of one corner of the TextBox, and
the second two parameters (wid, hgt) specify the width and height of the TextBox in pixels; wid
and/or hgt may be negative. The coordinate origin is always relative to the bottom left corner of
the TextBox.

TextBox will also draw a visible box on the display (as a visible background or container for the
text) if required.

If the current fill Pen is not transparent then the TextBox is filled with this pen colour - just like a
normal Box.

If the optional border parameter is supplied then a border is drawn within the TextBox rectangle
and the text margins are set immediately inside the border. (If the border is negative then the text
margins are set to the edges of the box rather than inside the border. This can be useful during
development.) For 'rounded corner' border style, the text margins are set so the text will not
collide with the corners.

If the optional font parameter is supplied then this sets the current font.

If the optional padding parameter is supplied then the left and right hand margins are indented by
this number of pixels inside the border.

285 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

When the TextBox is created, the text background pen is set to TRANSPARENT, justification
is set to Left and the cursor is placed at the Home position for the current font.

 If you see text that prints in one position the first time, and then prints in a slightly different
position subsequently, it may be because the font was changed after setting the TextBox.

You can use Left, Right, Centre, HTAB, VTAB, GOTOXY, etc to move the text cursor around
and otherwise format text within the TextBox.

Note: though it is not possible to print text below the bottom of a TextBox, it is possible to use
VTAB, etc, to position text at or above the top of a TextBox.

Note that nothing is seen on the display until an Update message is issued.

Default text area is the whole screen

If TextBox is called with no parameters this resets the current text area to the whole of the LCD
display area with no background, border or padding.

g.TextBox

Examples

The following example creates a TextBox and then prints some text into it:

Make g GraphicsLCD(1)
Start Every 100 g.Update
g.TextBox(20, 20, 100, 100, $102)
Print To g,"Hello World"

Update

Update

The Update message forces all the changes that have been made (to the local-memory copy of
the display data) to be sent to the display itself. Nothing will be displayed on the physical display
device until an Update message is issued. Whilst individual Update messages can be used, e.g.:

286GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Print To w, "Hello"
panel.Update

When you first start to use the GraphicsLCD it can be useful to start a separate task to keep the
LCD updated:

Start Every 100 panel.Update
However, for most applications it often makes sense to put explicit updates in your code so the
display gets updated at exactly the right point.

The GraphicsLCD driver objects will only update the areas of the display that have been
written to since the last Update.

There may be different algorithms used by the different drivers for each display:

The most common algorithm keeps track of a rectangular area that encloses all the changes
that have been made. The speed of display activity can therefore be improved by updating
relatively quickly, before changes have been made over a large area.

A less common algorithm, usually used for smaller displays, keeps track of changes in
horizontal bands across the display. The speed of display activity can therefore be improved
by confining fast changing graphics to groups of horizontal areas.

Xpos, Ypos

XPos Int
YPos Int

XPos and YPos return the position of the internal text cursor - that is, the position that the next
character will print at – relative to the current TextBox origin.

Capture position of Nth character

XPos and YPos can also capture the position of a particular character by using Format(5) :=
N to capture the Nth character.

The 'captured position' is turned off at the next TextBox, CLS, Home - or by setting
Format(5) to -1, whereupon Xpos and Ypos will report the current text cursor position.

This feature may be used to position a visible text cursor for text editing on the display.

Example

To TextEditorUpdate
 lcd.TextBox(...)
 lcd.Format(0):= True ; Wordwrap on.
 lcd.Format(5) := CursorPosition ; Set up cursor position capture
 Print To lcd, Text ; Print text
 Print To lcd, GotoXY(lcd.XPos, lcd.YPos), "|" ; Print cursor

287 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

End

PRINT TO

Print To <GraphicsLCD>,<print list>

Print may be used to print text to the GraphicsLCD object. You can also print text using the
PrintF message.

Printing text on the GraphicsLCD is relatively complicated because there are many different
formatting possibilities, including:

Position of the text on the display

Font size and typeface

Justification (left, right or centre)

Word wrapping on or off

Text foreground and background colours

Margins

Some of these format options are specified by using special Print keywords - see below - and
others are specified by sending messages to the GraphicsLCD object.

These messages are

TextBox - specify the area within which to contain text output

Pen - specify the colours to print with

Format - specify some other miscellaneous format options

Print keywords

These print keywords control printing from within a Print statement. You can use as many of
them as you need in a single Print list.

CLS

Clears the entire display using the default fill Pen. It also resets the current TextBox to the whole
display area with no border or padding.

Almost all text formatting is reset: Left justification is applied, the cursor is sent to the Home
position for the current FONT (which is left unchanged), and all .Format options are reset.

The current pens are reset. See Pen.

No change will be seen until an Update message is sent.

Print To glcd, CLS

288GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Home

Positions the text cursor at the top left of the current TextBox, correct for the current font, and
resets the justification to Left.

Print To glcd, Home

CR

Positions the text cursor at the beginning of the next line down, according to the current font
size, TextBox padding and justification. Any text that overflows the bottom of the TextBox then
it is not printed.

Print To glcd, "Hello", CR

You can force the vertical movement of CR independently of the font size, using the Format
message.

Left, Right, Centre

These set one of these justification styles until the next justification command, TextBox or CLS/
Home. They also put the cursor at the left, centre or right of the current TextBox.

Print To glcd, Right, "Some text", CR

If you want to print justified text relative to a point in the TextBox, use GOTOXY, VTAB or
HTAB to position the cursor after the justification command.

Print To glcd, Centre, HTAB(-20), "abc", CR

Note: you can also change justification by using an embedded escape sequence.

HTAB (Int pixels)

This moves the cursor horizontally across the display in pixel units. The cursor is moved relative
to the anchor position, which is set by the last explicit cursor movement (such as HTAB,
VTAB, Left, Right, Centre, CR, Home). Negative values will move the cursor leftwards.

CLS, Left, Right and Centre set the anchor position to the left, right or centre of the current
TextBox.

CR and Home also set the anchor position.

The HTAB position will always be limited to inside the current TextBox border and padding.

The pixels parameter is a signed 16-bit integer (range -32768 to 32767)

VTAB (Int pixels)

This moves the cursor vertically up or down the display in pixel units. The cursor is positioned
relative to the anchor position. (The anchor position is described in HTAB above).

289 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Negative values will move the cursor upwards. The downward movement is limited to the
bottom of the TextBox, but the upward movement is not limited - you can print text at or above
the top of a TextBox.

The pixels parameter is a signed 16-bit integer (range -32768 to 32767)

When a TextBox is first set the tab anchor position is set at the Home position for the
current font. To avoid confusion it's best to set the font in the TextBox parameters, or at
least before the TextBox is set.

GOTOXY (Int x, Int y)

Positions the text cursor at the coordinates x,y relative to the current TextBox origin

GOTOXY (0,0) refers to the bottom left hand corner of the TextBox, inside any border and
padding.

FONT (Int font)

Set the current font to print to the display. Several embedded fonts are supplied. These are
listed in the table below, and you can add more fonts.

Font Number Font style Proportional /
Monospaced

Character Height
(pixels)

External
Leading*

(pixels)

0 Sans Serif Proportional 10 1

1 Sans Serif Proportional 15 2

2 Sans Serif Proportional 19 3

* External leading is the amount of blank space left between lines of text when printing
CR.

Fonts may be changed at any point in a Print statement.

 Print To glcd, FONT 0, "Hello", FONT 1, " World"

You can also specify the font when setting the TextBox, or change fonts with an embedded
escape sequence.

If you specify a font that hasn't been defined then FONT 0 is substituted.

You can use the Format message to arrange for any font to print in a 'monospaced' format - eg.
for printing columns of numbers.

290GraphicsLCD

Copyright © 2009-2021 Venom Control Systems Ltd

Bitmaps embedded in text

You can embed bitmap images in your text, as if the bitmap were a single character, though you
can also use this method to display bitmap images that are much larger than a character if you
like.

Bitmaps are embedded in a quoted string by placing \^hh in the text at the point at which the
bitmap should appear (where hh is the bitmap's number represented as a 2-digit hexadecimal
number). You can set this number by registering the bitmap with the GraphicsLCD object. See
below.

For example, the following would write 20°C to the graphics LCD provided that a bitmap of
the degrees symbol ° had previously been created and registered as bitmap number 3.

Print To glcd,"20\^03C"

Note: due to improvments in Venom, printing a degrees symbol might now be better handled by
using a font containing the degrees symbol, and the following code:

Print To glcd,"20°C"

Registering bitmaps for printing

obj . Bitmap (Int bitmap_ref) := Int address

This form of the Bitmap message registers a bitmap with the GraphicsLCD object so it may later
be printed. You have to supply a unique reference number (in the range 0-255), which you can
use to refer to the bitmap later.

Example: registering bitmaps

To init
 Make glcd GraphicsLCD(1)
 glcd.Bitmap(3) := degrees.Address ;Register bitmap 3
 Start Every 100 glcd.Update ;task to update display
End

To main
 Print To glcd,"20\^03C"
End

; Bitmap for a small degrees symbol.
; Note: a degrees symbol may be present in the font you are using,
; so this would then be unnecssary.
Array degrees(8)
 $04 ; 4 pixels wide
 $00
 $04 ; 4 pixels high
 $00
 $01 ; 1 bit per pixel

291 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 $00
 $00 ; [No transparent 'colour' in mono bitmaps]
 $00
 %01100000 ; The bitmap data...
 %10010000
 %10010000
 %01100000
End

See also Bitmap, PrintF

HashGenerator

The HashGenerator object enables a secure message digest ("hash") to be made from any set of
data from an empty string to a large file.

The hash value generated is 256 bits (32 bytes) long and the algorithm (known as SHA-2) is
designed to make it almost impossible to tamper with the data in any way that would not change
the digest value, and equally difficult to find out the full original data content even if the hash value
and part of the data is already known.

It is also a useful way of generating a numerical key for encryption purposes from text such as a
password or phrase of any length.

Summary of messages

Make

Get

Put

Reset

Print

Example of use

To init
 Make hash Array(8, 32, 0) ; for storing hash result
 Make sha HashGenerator
 Make fs Filesystem("SD") ; file system on SD card
End

To main
 Print SHA, CR ; SHA for empty string

 sha.Put("abc")

292HashGenerator

Copyright © 2009-2021 Venom Control Systems Ltd

 Print SHA, CR ; SHA for string "abc"

 sha.Put("abc")
 sha.get(hash) ; get the hash value into array this time
 ; print the value from the array (should be the same as above)
 Repeat 32 Print ~hash.(index0):-2 Print CR

 ; Make the SHA-256 of a file, also illustrates Printf with %o
 f := fs.open("myfile.txt", Char)
 Repeat f.length sha.put(f.get)
 Printf("SHA of myfile.txt is\n%o\n", sha)
End

This produces the result:

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad
BA7816BF8F01CFEA414140DE5DAE2223B00361A396177A9CB410FF61F20015AD
SHA of myfile.txt is
6c9dc57ad9b3bef88ea57b454bb678246d5de6748b711c71fabaef7af5539147
-->

Creation

Make <object> HashGenerator

Creates a SHA-256 bit Hash generator in its initialised state.

Get

Get(Array hash)

The parameter must be an array of 32 bytes

This message finalises the hash creation process and writes the result to the array supplied as a
parameter.

After this has been done, the object is reset.

293 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put(Int n)

The parameter is treated as a single byte or character. Only the low 8 bits are used.

Put(object s)

The parameter can be a fixed string, string object, array of 8 bit integers or buffer of 8 bit
integers or text.

If it is a buffer it must have no more than than 256 elements.

In both cases the current state of the hash generator is updated with the data supplied.

You can repeat the Put message any number of times; the resulting hash will be that of all the
Put

data concatenated.

Reset

Reset

The Hash Generator is set to its initial state.

This is not often needed as the generator is reset automatically by Print and Get.

PRINT

Print <HashGenerator>

This finalises the hash computation, prints the result as a 64 digit hex string and resets the hash
generator.

HTTPServer

The HTTP object can be used as the basis of a web server thread. It creates a TCP listener,
parses incoming http requests and creates the necessary headers and other protocol for the
response. The application program thus only has to identify the URI (Uniform Resource
Identifier) requested and create a response either by printing HTML or by sending buffer or file

294HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

contents to the HTTP object.

The HTTP protocol object can work automatically with a local file system, so that an incoming
request for a file will result in that file being sent without any Venom program involvement at all.
The object will guess the correct MIME data type for common file naming conventions and will
send sensible default cache control headers to improve efficiency.

Sending HTML code in response to a request is a simple matter of using Print statements to
generate the required text.

The object supports http GET and POST requests enabling HTTP form data to be sent, so a
variety of browser-generated data or commands can be sent to the HTTP server.

Cookies are implemented, enabling the illusion of a persistent connection ("session") with a
browser. For example, after logging in with a user name and password, a user can continue to
use the server which remembers the logged-in state of the user.

The creation of HTML code is a wide-ranging topic that is not documented here.

See also Notes on Use and TCP/IP Networking

Summary of messages

Make

Address

Cookie

Count

Debug

Flush

Format

Get

Mapping

Match

Name

Period

Put

Redirect

Valid

Value

Print

Put

Queue

Print To

295 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Notes on Use

Example of a Minimal Web Server

You can make the VM2 serve HTML code from files very easily if no server-side processing is
required.

Here is the code for a minimal web server, using files in Flash memory. If you have ever created
a simple web site using html code, images and (optionally) a CSS stylesheet you can copy the
site contents to the Flash filesystem using USB and this Venom code will serve it. To access it
from a browser, put in the URL "vm2server".

Note we create two server tasks; you may create as many as resources will allow but it's
advisable to have more than one server

thread running, especially if your html code has embedded images or is likely to be accessed
from more than one location simultaneously.

TO init
 Make fs filesystem("fla")
 Make eth Ethernet(nil, "vm2server")
END

TO main
 Start server ; start two server tasks
 Start server
END

TO server
 LOCAL http := New HTTPServer(fs)
 LOCAL path := New string(100)

 FOREVER
 [
 http.get(path)

 ; if you need to process requests not matching an existing filename,
 ; the code to do so is inserted here. E.g. uncomment the next two lines to
 ; display a directory using the function listed below
 ; If fs.Find(path) = 2 ; path is a directory
 ; ServeDirectory(http, "VM2 Server", path)

 http.Flush
]
END

296HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Listing Directories

If a request is made which matches a directory in the file system, this is always returned by the
HTTP Get message and must be processed by Venom code. A simple function to do this is
shown below. To use it, uncomment the lines indicated in the code above.

The code below assumes that fs is the name of the file system used by the HTTP server. If you
use this code and your file system global variable has a different name, you'll have to edit it. You
can, of course, also edit it to produce listings in many different formats. See Print Filesystem.

To ServeDirectory(http, title, dirpath)
 http.printf("<html><head><title>%s: %s</title></head><body>\n", title, dirpath)
 http.printf("<h1>Directory of %s: %s</h1>\n<pre>", title, dirpath)
 print to http, fs:dirpath:"%z %Y-%m-%d %h:%M:%s %b %n"
 http.printf("</pre></body></html>")
End

VHTML - HTML with embedded Venom Variable Names

A special variant of HTML code allows Venom global variable names to be embedded in what
would otherwise be an HTML file. Such a file is identified by its name ending with the string ".
vhtml".

Inside the file, variable names are enclosed between backslash ('\') characters.

If a literal backslash is needed in the HTML code it is represented by an empty name i.e. two
consecutive backslashes.

When the file is sent in response to an http request, the global variable table is searched for a
matching name. Type conversions are performed according to the C language printf()
formatting conventions as follows:

integer: "%ld"

float: "%g"

strings and text buffers are sent verbatim.

Unmatched variable names are substituted with the string "?xxxx" , where xxxx is the name.

Variables whose type is invalid are substituted with the string "?type:xxxx" where xxxx is the
name.

It's worth emphasising that variables substituted in this way do not necessarily have to be in
ordinary display text. They could appear in the attributes for an HTML tag, or in part of an
embedded CSS style specification for example. This is useful for changing default values of form
input elements, and offers creative possibilities such as data-driven changes of colour or bar-
graph charts.

 See also Printf and TextBlocks

297 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Notes on URIs

An http request is typically of the form:

GET http://www.example.com/index.html?test=abc HTTP/1.1

or

GET /index.html?test=abc&rate=10 HTTP/1.1

The first form is an absolute URI with the scheme (http://) and host (www.example.com)
included. The second form is called a relative URI. Either may be sent by a browser; the http
protocol object will skip the host part if present.

The '?' character and following string are optional. This query string, if present, contains data
that can be processed by the server. It is typically sent when an HTML form is submitted, in
which case it is a sequence of "name=value" pairs separated by '&'. Because certain characters
are unsafe to send in a GET query like this they are escaped; the HTTP Protocol object
translates these escape codes when the data is retrieved by a Value message.

HTTP Protocol Considerations

Persistent connections

The HTTP object supports persistent connections, i.e. when a request has been received and the
response sent the TCP connection remains open so further requests can be sent in the same
connection. The connection is closed if no further requests are received for 5 seconds, or if the
remote end closes the connection.

Note that an application using the HTTP object should run several web server tasks. To
communicate with one browser needs 2 tasks as the HTTP standard (RFC 2616) recommends
the use of a maximum of two simultaneous connections per user agent. More are needed if you
expect multiple users to access the VM2's web server concurrently.

Headers

The HTTP object takes note of the following headers in the request, ignoring others and using
default settings.

Cookie This can be retrieved with the Cookie message

Content-Type In a POST request, this can be set to application/x-www-form-
urlencoded or multipart/form-data . The latter format is usually
selected by web browsers when sending a file from a form, as it allows
large blocks of data and binary data to be sent.

Transfer-Encoding In a POST request, a value of chunked can be accepted; otherwise, a
Content-Length header is expected.

Content-Length In a POST request, this implies no transfer encoding: data is sent as-is.

Connection A value of Close is recognised; otherwise the default is keep-alive.

If-None-Match Used with an Etag value, and when a file is requested, this enables a

298HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

special response to be sent indicating that the client may use a
previously cached copy of the file because the file's contents have not
changed.

The headers sent in responses are:

Server: VM2/yyyymmdd yyyymmdd is the venom release date code

Date: Tue, 28 Nov 2006 14:23:12
GMT

The standard format for HTTP dates

Transfer-encoding: chunked Date generated by Venom Put, Print To and
Printf and in a .vhtml file is sent in this format,
as the content length is not known at the time the
headers are sent.

Content-Length: For files other than .vhtml, this is sent and the
chunked encoding described above is not used.

Cache-control: Either a max-age value or "no-cache" (see Period
message)

Content-type: See Format message for some default automatic
types

Set-Cookie: Replicates received cookies and also sets a new
cookie if requested by a Cookie message.

Etag For files, this is set to an 8 digit hex number (actually
the CRC32 of the file's directory entry) which
changes when the file changes in any way.

HTTP Request Methods

GET and POST methods are supported.

The Value message will retrieve variables sent using either GET or POST.

Uploading Files

A file of any type of data can be sent with the POST method if the http object was created with
an associated file system.

The file data is stored in a temporary file whose name is in the form XXXXXXXX.tmp, where
XXXXXXXX is a random hexadecimal number. The file name can be retrieved from the HTTP
object by Name(0, str), and if desired the original file name can be retrieved with Name
(1, str). (see http.Name)

Note that you can use the Mapping message to restrict the location of the uploaded temporary
file to a chosen directory.

Limitations with Files and POST

Only one file at a time may be uploaded. A future version of Venom may allow multiple files to

299 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

be uploaded in a single POST message.

Other than file contents, POST is not suitable for sending pure binary data: in particular, the
presence of a NUL (0) byte in the data will cause incorrect results. This limitation may be lifted
in a future version of Venom.

When creating an HTML form to upload a file, the <FORM> element must include the attribute
enctype="multipart/form-data"

e.g. <form method="POST" action="process_upload.html" enctype="multipart/
form-data">

Forgetting to do this is a very common error, and results in the form data being silently sent
with no file attached.

Creation

Make <object> HTTPServer([filesystem fs, [, Int port]]
)

filesystem Specifies a file system to be searched for files to match incoming http GET
requests for serving automatically. If this parameter is missing or nil then no
file system will be used.

port If specified, defines the port number for the TCP listener. By default the
object will listen on port 80, which is the standard port number for http.

The make statement creates an http server object and associated TCP listener.

If you specify a File system, you may restrict the way it is used by the HTTPServer object
using the Mapping Message.

An HTTP Protocol object with default TCP buffer sizes uses 11710 bytes of memory when
created

Address

Address Int

The Address message returns:

0 if the http object is in the listening state

the IP address of the originator of the request if the http object has returned from a Get

300HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

message or a Queue message has returned a value of 1

Example

path := http.Get
Print "request from ", http.Address:"IP", CR

Cookie

Cookie(<'Text'> name, String val) Int

name Name of cookie; can be a fixed or variable string or text buffer

val String object to write cookie value to, if a cookie with matching name has been set

If a cookie with the given name has been set, sets the string variable to the value of the cookie
and returns True (1)

Otherwise, Returns False.

Cookie(String name) := String value

Sets a cookie with the given name and value.

This message must be used only after an http.get has returned i.e. after an incoming request has
been received.

The cookie is set with a default expiry time of 10 minutes. If a source of calendar time is
available

(either the real time clock or an internet time server), the expiry is set as an actual time and date

with the cookie "Expires:" attribute. Otherwise a "Max-age" attribute is set with a value of
600 seconds.

The cookie expiry can be changed by a Period message with the cookie's name as a parameter.

Note that any cookies received are sent back with the default "Expires:" or "Max-Age:"
value if they were not processed with the Cookie and Period messages.

Simple Example of Use

In this code we expect a session id named "SID"

301 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

LOCAL reqpath := new string(100)
LOCAL temp := new string(100)

http.get(reqpath)
if http.cookie("SID", temp) IsFalse ; if we haven't received a session ID, set one now
[
 temp.printf("%08x", system.time(0)) ; could be a random number or other time value
 http.cookie("SID") := temp ; set a new "SID" cookie
]

Brief Explanation of Cookies

Cookies are a protocol that enables a web browser to identify itself so that a series of requests
to the same server can be recognised by the server as coming from the same source. E.g. if a
user had to log in, a cookie will identify that user in subsequent requests so the login screen is not
displayed again, also so that the content displayed or other actions taken may be tailored to the
user's ID.

Count

http.Count(Str name[, Int post]) Int

name A variable name

post not present: count both post and GET variables with matching name

= 0: count GET variables only

= 1: count POST variables only

The Count message counts the number of instances of a POST or GET variable with the given
name in a request just received.

If no variable with a matching name is found, it returns 0.

See Value message for more information about GET and POST variables.

Debug

Debug Int

This internal flag can be set True (1) or False (0). When True, the http object will show the
headers on outgoing responses

302HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

(you can show incoming request headers with the Print message) and occasional other useful
information.

Flush

Flush

Transmits any remaining data in the response buffer, then returns the http object to a listening
state.

If no data was sent to the object following a successful Get, the Flush message causes a
pre-packaged HTTP Error 404 (Not Found) response to be generated.

A Flush message must always be sent to the http between Get messages, even if the first
Get returned a request for something non-existent.

Format

Format(String/Buffer mimetype)

mimetype

Fixed string specifying the MIME (Multipurpose Internet Mail Extension) data type
for the response string.

The MIME type data must be a recognised string in the general format type/subtype.

This message is only necessary to override the default MIME type generated by the HTTP
object, based on the URI received. By searching the URI for certain strings the following types
are inferred by default, and if the request is for a file that exists the indicated MIME-type will be
sent automatically.

URI substring Default MIME type Use

.png image/png Graphics images, especially drawings and solid
colours

.jpg

.jpeg
image/jpeg Graphics, especially photographic images

.gif image/gif As PNG, older standard

.htm, .html text/html HTML code

303 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

URI substring Default MIME type Use

.vhtml text/html HTML code with Venom variable names
embedded. See VHTML

.txt text/plain text not to be interpreted as HTML, usually
displayed in a fixed size font

.css text/css Style sheets to define presentation style of HTML
pages

.log text/plain Log files are assumed to be plain text

.xml application/xml XML data

.js application/
javascript

Code to be executed by Web browser

.csv text/csv Comma Separated Variables, which can be
imported by many spreadsheet programs.

.svg image/svg+xml Scalable Vector Graphics - useful for software-
generated images like graphs.

default application/octet-
stream

A generic stream of bytes - unknown application

A full list of registered MIME media types is available at http://www.iana.org/assignments/
media-types/.

 Minor bug: the parameter must be a fixed string. It should be allowed to be a text buffer
also.

Setting new default file type/MIME type associations

http.Format(str file_ending, str MIME_type, Int Max-
Age)

file_endingA file name ending string like ".pdf" (must include the dot)

MIME_type The MIME_TYPE to be sent in the HTTP Content-Type header

Max-Age The cache lifetime to send as a Cache-control: Max-Age=nnn Header
for all files of this type

This can be used to modify or extend the list of default values shown above, applicable when
files served directly from the file system have names and data type not in the default list.

304HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Only one global table of filename ending/MIME type associations is kept. This saves space, and
it's unlikely that you'd need to run two web servers simultaneously with different tables.

Get

Get(String s)

The path is stored in the String object, s, supplied as a parameter.

The resource path, in simple terms, is the part of the URI that looks like a file name. For
example, if the URI was

http://www.mysite.com/search.html?keyword=VM2

The path would be search.html

If no file system was specified when the HTTP object was created, then every incoming request
except for "test" will cause Get to return. Otherwise during the Get, any incoming request
whose path matches a file name in the file system and which has no GET or POST variables will
be serviced automatically. This includes the processing of VHTML files. The Get will not return
until something is requested which does not match a file name or which has variables attached.

Variable Values can be retrieved from the query string with the Value message.

Match

Match(String name, String value) Int

name Name of a variable that may or may not have been set in a POST or GET
request

value Variable is tested for equality to this string

Retruned result: true (1) if variable exists and matches the value given, False (0) otherwise

305 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

In some applications a string value is expected to have one of a limited set of known values.

This message finds out if a variable exists with the name and value given, returning true if it does.

It is less cumbersome than creating a local variable and testing its value with a string Compare.

Common uses include:

For an "action" variable, with values like "list", "update", "reset", "save"

For checkbox variables, which either don't exist or have the value "on"

Example

If http.Match("action", "update")
[
 testmode := http.Match("testmode", "on")
 ...
]
Else If http.Match("action", "list")
[
 ...
]
; etc.

Name

1. Retrieving Names for Uploaded Files

Name(Int select, String var) Int

select 0 = get name of temporary file where uploaded file data is stored

1 = get name of original file at client end

2 = set name to store downloaded data as a file (see section 2 below)

var String variable in which to store the name or (when select = 2) string to use as
file name

Returned value: 1 if the indicated file and name existed, 0 if not.

When a file is uploaded using the POST method, this messages enable two file names to be
retrieved.

Uploaded file data is stored locally in a temporary file whose name is chosen by the
HTTPServer object and guaranteed to be unique. This name is returned when select = 0. If
the Mapping message was used to specify a directory for the temporary file, the returned string

306HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

includes that path.

When a file is uploaded, the name of the original file at the client (browser) end of the link is
returned when select = 1.

The Name message may only be used After http.Get has returned and before sending http.
Flush.

The temporary file is removed (if it still exists) by the http.Flush message. If you wish to
retain the file, it must be renamed.

Temporary file Name

The temporary file is created in the root directory of the file system or in the directory specified
by the Mapping message, and is in the form xxxxxxxx.TMP where xxxxxxxx is a randomly
generated 8 digit hexadecimal number. Your Venom application should avoid creating files with
similar names.

Example

This example saves the uploaded file to its original name by renaming the temporary file.

TO server
 LOCAL tfname := New string(100)
 LOCAL fname := New string(100)
 LOCAL path := New string(100)
 LOCAL http := New HTTPServer(fs)

 FOREVER
 [
 http.get(path)
 if path.compare("upload.html") = 0
 [
 http.Name(0, tfname)
 http.Name(1, fname)
 fs.remove(fname)
 fs.Name(tfname, fname)
]
 Else if path.compare(... ; other paths requested
 ... ; code for other requests

 http.Flush
]
END

See Mapping which is recommended for use when files are to be uploaded.

Also see Uploading Files in Notes on Use.

307 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

2. Setting File Name for Downloaded Data

http.Name(2, Str name)

When the first parameter has a value of 2, the second is a string (variable or fixed) that sets name
of file for downloading dynamically generated data.

This will cause a browser to download the data and store it with the file name given.

Typically it would be used in conjunction with the http.Format message to specify the data type if
the requested resource name implied a different file type from the data returned.

This form of the Name message can only be used after an http.Get has returned and before
sending any data to the http object.

Output

Output(Int mode)

When mode = 0, this sets printed output to the http object to be sent as http headers.

When mode = 1 (the default state), output is sent as part of the normal data returned in an http
response e.g. html text.

Restrictions on Use

This message enables headers to be generated which are not automatically produced by the
HTTP object.

It must be used after any messages which would affect the automatically generated headers, such
as

Period, Valid, Cookie, Name(2, ...)

Header data can be output using any of:

http.Put(int or string)
http.printf
Print To http

Every header sent this way must be terminated with "\n"

Example

To make a page refresh itself every 5 seconds:

Forever
[
 http.get(path)
 http.Output(0)
 http.printf("Refresh: 5; url=%s\n", path)

308HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

 http.Output(1)
 ... ; code to send the HTML page data
 http.Flush
]

Note that the above example could also specify a different URL instead of path, with the result
that the page will display for 5 seconds, then another page will be visited.

Period

(1) Cache Control

Period Int

This sets the period of time in seconds for which the returned data can be allowed to remain in a
browser or proxy cache. The purpose of this is to speed up response when the same data is
requested more than once and has not changed. Web browsers usually cache responses: a
resource may be fetched the first time with this time period set in a Cache-control header,
then during that period any further requests will use the cached copy instead of requesting it
again from the VM2. An expiry value is assigned automatically by the http server object and the
Period message is only needed if the default is to be overridden. The Period message
should be sent after Get and before sending any response data, and only applies to the current
request.

A period of 0 is valid and desirable if the response contains variable data that is likely to change
every time it is requested, or if the request contains variable data intended to update the state of
the VM2 in any way or trigger an event. In either case, a Period setting of 0 guarantees that
the browser will send a request every time.

For versions of Venom after April 2016, the Period value defaults to 0 whenever Get
returns, as any request being handled by Venom code is likely to involve dynamically-varying
data in either the request or the response, and browser cacheing is undesirable in this case.

If the Venom code is handling a request for a file whose contents don't change, or for constant
data supplied from an array or textblock, a non-zero period can be set to suppress
repeated sending of identical data.

Technical Detail

The relevant http protocol headers are:

Cache-control: max-age=nnn (for non-zero period values)

or

Cache_control: no-cache (period = 0)

309 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

See alsoFormat message, where default expiry values can be set for different data types when
the file is served automatically.

(2) Cookie Expiry

Period(Str name) Int

This sets the expiry for a cookie whose name matches the one given.

The value assigned is the number of seconds in the future when the cookie should expire. If a
source of calendar time is available, the cookie is sent to the client (browser) with an Expires:
attribute set to the corresponding date and time, otherwise a Max-age: attribute is sent with the
given time value in seconds.

As with the cache control Period message, The cookie Period message should be sent
after Get and before sending any response data, and only applies to the current request.

If a fresh Cookie is being generated i.e. no cookie was sent by the client, The Period
message must be sent after the cookie has been set by the server, otherwise you'll get a run time
error trying to set the period for a cookie whose name is not yet recognised.

Example

LOCAL cookieval := New string(30)
...
http.Get(req)
If http.Cookie("MYCOOKIE", cookieval) IsFalse
 http.Cookie("MYCOOKIE") := "cookiedata"
http.Period("MYCOOKIE") := 3600 ; expires in an hour

; code to send response to http
http.printf(...

Put

Put(data)

Put puts a character, buffer, string, array or file into the response buffer.

A buffer must be text or 8 bit integers.

An array must be 8 bit integers.

All integer types are sent as 8 bit binary or character data.

Text buffers and strings are sent unmodified as 8 bit characters.

Files of any type are sent as a stream of bytes as stored in the file, starting at the files's current
read point and finishing at EOF, except that if the file name ends with the string ".vhtml" (the
test is not case-sensitive) it is subjected to VHTML processing. The file is left open with the
readpoint at the end.

310HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Put(String text[, Int type])

text A String to be sent to the HTTP link

type 0 (default) = send as html;

1 = make VHTML substitutions

In this special case: the optional second parameter (default value 0) defines whether the text
should be sent as normal HTML (0) or using the VHTML convention (1) where global variable
names can be embedded between backslashes. See VHTML.

Redirect

Redirect(str url)

url a string defining the new location

flush If set non-zero, perform an http.Flush operation afterwards.

Default 0 (no flush)

This message causes the server to send back a response code ("303 See Other") and
headers that will cause a redirection to a different location.

In addition to the headers and response code, a brief HTML page is sent containing the
redirection information as an link (as recommended in RFC2616 "HTTP/1.1")
but in normal use with most browsers this would never be seen as the browser will redirect to
the new location immediately.

No messages that affect http headers should be used before Redirect, and no data should
be sent to the http object after it, but a Flush message must be sent after it, just as with any
other response.

Typically this behaviour would be controlled by GET or POST variables sent when the current
page is the target of an HTML <form> element.

It enables you to set which of several different pages to go to depending on a form variable's
value.

Example

Forever

311 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

[
 http.Get(path)
 if path.Compare("formaction.html") = 0
 [
 If http.Match("action", "redirect")
 [
 If http.Value("url", url) > 0
 http.Redirect(url)
]
 Else... ; other action values
 [
 ...
]
]
 Else... ; other path values
 [
 ... ; other code
]
 http.Flush
]

Queue

Queue Int

Returned value:

0 if no incoming request requiring service by the Venom program is present

1 if an incoming request requires processing by the Venom program

If a request can be processed internally this is done and Queue then returns a value of 0.

The returned value thus always indicates whether a subsequent Get will return immediately.

Queue can be used in a loop where it is required that Getwill never block. e.g.

forever
[
 if http.Queue > 0
 process_request(http.Get)
 ; other tasks in loop...
 ...
]

312HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

Valid

Valid Int

Gets or sets the numerical response code to be used in the response headers.

This is usually set automatically, but if you want to generate a customised error message to
accompany an error response you can do so by setting Valid to an appropriate value such as
404 (not found) and printing the HTML response text to the http object.

The values generated by the HTTP object automatically are:

200 - OK : normal code for data response

303 - See Other: indicates a redirect to a different URL (see Redirect message)

304 - Unmodified : sent when an "if none-match" header was received and the file requested has
not changed

400 - bad request

403 - Forbidden e.g. attempting to upload a file when there's no file system, or 2nd parameter
of Mapping was nil

404 - Not found e.g. file not found

413 - Entity size too large e.g. POST data more than 10000 bytes (other than a file)

414 - request line too long : max 1022 chars

501 - Not Implemented e.g. a request other than GET or POST was received

503 - Unavailable: generated when file system media, e.g. memory card, has been removed and
a file was requested

See Internet RFC 2068 "Hypertext Transfer Protocol" for the full list of codes and their correct
usage, but most values are unlikely to be useful.

313 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value(name, Int default [, Int post, [Int select]])
Int value
Value(name, Float default [, Int post, [,Int select]])
 Float value

Value(name, String container [, Int post, [,Int
select]]) Int length
Value(0, String container) Int length

name A string or text buffer containing the name of an identifier that may have been
sent as part of the query string in an incoming request.

An integer value of 0 here copies the requested path (as returned by Get)
to the string variable

default An integer or floating point value

container A String object large enough to hold the result

post Zero: only search GET variables

Non zero: only search POST variables

unspecified: try GET, then POST if not found

select An optional integer (default = 1) selecting which instance of a variable to
retrieve when there is more than one with the same name

This retrieves values from POST or GET variables typically resulting from submitting an HTML
<form> element.

POST data is contained in the body of an HTTP request.

GET variables are in a query string, which is the part that follows a '?' in the URI. e.g.

http://mysite.com/somepage.html?num=123&temp=32.4&action=update

The query string contains assignments of values to named variables, separated by '&', e.g. the
above is taken to mean

num is set to the value 123

temp is set to the value 32.4

action is set to the value "update"

Read an Integer or Float

The quantity is expected to be a string of digits which will be returned as an integer or floating
point number depending on the type of default.

If the name does not appear in the GET or POST variables, the value of default is returned.

If the variable is set but is empty or contains no valid digits, a value of 0 or 0.0 is returned,

314HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

depending on the type of default.

Read a String

You have to pass a String object (container) that the value is placed in.

If the name is that of a POST or GET variable, container's contents are replaced with the
associated value string and the length of the value is returned.

Otherwise container remains unchanged and 0 is returned.

If the value is longer than the capacity of container, it is truncated.

Multiple Values with the Same Name

It is possible to have multiple values with the same name in a single request. This happens
normally if an HTML form contains a <SELECT> element with the multiple attribute set and
more than one option was selected when the form was sublitted. The optional select
parameter chooses one of these values by positional count. The Count message will tell you how
many instances of a variable exist with one name.

GET and POST variables with same name

If the same name is defined as both GET and POST variables and this message is used with only
two parameters, the GET value takes precedence. Set the post parameter to 0 or 1 if you
need to be specific.

Limitations

1. The identifier (variable name) must not contain an equals sign ('=' character), even in its
URLencoded form as "%3D", nor may it contain a NUL character, even encoded as %00.
The '=' can appear in the value of a variable without problems and will be encoded as "%
3D" by web browsers processing form data and decoded normally by the HTTPserver
object.

2. The value of a variable must not contain the NUL character, even encoded as "%00".

Examples of usage

Make s string(100)
http.Value("stringval", s)
xval := 20
xval := http.Value("xval", xval) ; unchanged if not specified
intvar := http.Value("intval", 0) ; 0 if not specified
fltvar := http.Value("fltval", 1.0) ; 1.0 if not specified

A suitable URI to produce results from the above would be something like:

formresponse.html?stringval=abcdef&intval=1234&fltval="123.456"&xval=10

315 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Example of Multiple values with select multiple

HTML form code snippet:

<form action="procform.html" METHOD=GET>

 <select name="animal" multiple>

 <option value="dog">Dog</option>

 <option value="cat">Cat</option>

 <option value="goat">Goat</option>

 <option value="horse">Horse</option>

 </select>

 <input type="submit">

</form>

Partial contents of Venom code for "procform.html"

Example URI: procform.html?animal=cat&animal=horse

s := New string(20)
http.put("animals selected
")
n := http.Count("animal")
If n = 0
 http.put("(none)
")
Else
[
 http.printf("%u animals selected
", n)
 Repeat n
 [
 http.Value("animal", s, 0, index)
 http.printf("%s ", s)
]
 http.put("
")
]

PRINT

Print <HTTPServer>
Print <HTTPServer>:0

If the http object is listening, printing it produces the text: "http listening"

If a Get has returned a request and before a Flush message has been sent, printing the http

316HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

object produces the text "http GET " followed by the requested URL

Print <HTTPServer>:1

After a GET has returned, this lists all the received http headers. It's mostly useful for debugging.

Print <HTTPServer>:2

After a GET has returned, this lists any variables received either as GET or POST variables e.g.
from a form. This is very useful when debugging the processing of html form data, as it shows
you what variables were sent from the form.

PRINT TO

Print to <HTTPServer>, list

Any data can be printed to an HTTP object using the usual conventions for text devices. The
print output is appended to the content part of the response. This is the normal way to generate
an HTML page in response to an http GET request.

When printing to an http object, CR sends a CR LF (13, 10) sequence

Using PrintF with Embedded Text and TextBlock

Like all objects that accept PRINT TO, the HTTPServer object can also be sent a Printf
message, and it's worth noting that embedded text or a TextBlock may be useful ways to supply
the majority of the HTML text to be returned by making it the format string for a Printf
message. This keeps the HTML structure separate from the code that generates the variables,
which may make the code more readable and helps with getting the HTML code itself correct.

Example 1

In this example, a whole HTML page is in a TextBlock. A TextBlock , or several,
could also be used as part of a page, of course.

Note that the values displayed are the result of function calls, not global variables, so we can't
use VHTML here.

; this is just a big format string for a printf message
TextBlock page1:
<html>

317 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 <head>
 <meta http-equiv="refresh" content="2">
 <title>
 VM2 printf() with TextBlock demo
 </title>
 </head>
 <body>
 <h1>VM2 printf() with TextBlock demo</h1>
 <table>

 <tr>
 <th>Unit</th><th>Pressure</th><th>Temperature</th><th>Speed</th>
 <tr>
 <tr>
 <td>%u</td><td>%u</td><td>%u</td><td>%u</td>
 </tr>
 <tr>
 <td>%u</td><td>%u</td><td>%u</td><td>%u</td>
 </tr>

 </table>
 </body>
</html>
TextBlock END

TO servertask
 LOCAL http := new HTTPServer(nil)
 LOCAL s := new string(100)
 FOREVER
 [
 http.Get(s)
 http.period := 0
 If s.Compare("demo.html") = 0
 [
 http.printf(page1, 1, read_pressure(0), read_temperature(0), read_speed(0),
 2, read_pressure(1), read_temperature(1), read_speed(1))
]
 http.flush
]
END

Example 2 - the same using embedded text

In this example, a whole HTML page is in embedded text in the Venom code.

 LOCAL http := new HTTPServer(nil)
 LOCAL s := new string(100)

318HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

 FOREVER
 [
 http.Get(s)
 http.period := 0
 If s.Compare("demo.html") = 0
 [
 http.printf(<<<HTML:
<html>
 <head>
 <meta http-equiv="refresh" content="2">
 <title>
 VM2 printf() with TextBlock demo
 </title>
 </head>
 <body>
 <h1>VM2 printf() with Embedded text demo</h1>
 <table>
 <tr>
 <th>Unit</th><th>Pressure</th><th>Temperature</th><th>Speed</th>
 <tr>
 <tr>
 <td>%u</td><td>%u</td><td>%u</td><td>%u</td>
 </tr>
 <tr>
 <td>%u</td><td>%u</td><td>%u</td><td>%u</td>
 </tr>
 </table>
 </body>
</html>>>>, 1, read_pressure(0), read_temperature(0), read_speed(0),
 2, read_pressure(1), read_temperature(1), read_speed(1))
]
 http.flush
]
END

 PrintF

Mapping

Mapping(str getdir, str postdir)

getdir Directory for retrieving files requested with with http GET or POST messages

0 or nil to suppress searching of the file system.

postdir Temporary directory for uploaded files sent using POST

319 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

0 or nil to forbid file uploads

By default, if an HTTPServer object is created associated with a file system, any requested
resources are searched for in the root directory of that file system, and uploaded file data (using
html <input type="file"> in a form) is stored in a temporary file in the root directory.

Use of this message modifies the paths used for these purposes, and also enables either use of
the file system to be suppressed if not desirable.

The message should be sent after creating the HTTPServer object, and before any Get
message is sent.

The result is that an area of the file system can be reserved for use by the web server, and files
outside of that area cannot be accessed by any external HTTP access. For the postdir
parameter, it enables you to create and use a special directory exclusively for uploaded
temporary files, which cannot overwrite other files in the system.

For both parameters, If the directory does not exist on the file system, it will be created, but the
path to the directory must already exist, e.g. if you specify "/server/html" then "/server"
must exist.

To specify the root directory of the file system (the default setting) you can use either an empty
string or "/".

If you specify either parameter as nil or 0, then the file system will not be used. For getdir,
this means any http.Get(s) message will return the requested resource name in its string
parameter, as if no file system had been associated with the http object, and for postdir, it
means any attempt to upload a file will return an HTTP 403 "Forbidden" response to the
HTTP client (e.g. web browser) originating the request, along with a brief HTML page
explaining the problem.

Example

VM2 is set up with host name "vm2.localnet"

TO server_task
 Local req := New string(100),
 tempname := New String(100),
 http := New HttpServer(fs),
 f ; file for uploads

 http.Mapping("web", "web/tmp")
 Forever
 [
 http.get(req)

320HTTPServer

Copyright © 2009-2021 Venom Control Systems Ltd

 ; code to process requests
 If req.Compare("upload.html") = 0
 [
 http.Name(0, tempname)
 ; code to process uploaded file
 f := fs.open(tempname, char)
 ...
 ...
]
]
End

A browser request directed to http://vm2.localnet/index.html will cause the server to
look for

web/index.html in the file system.

A POST request to http://vm2.localnet/upload.html will cause the server to run the
http.Name statement shown, and if a file was uploaded with the POST data, tempname
will be set to something like "web/tmp/30AB6C92.TMP" which can be used directly by a
filesystem Open message.

I2CBus

This object allows communication with devices on an I2C Bus. Usually you won’t have to use
this object, as individual driver objects will often handle the I2C Bus for you. For example,
communication with PCF8574 digital I/O ports is handled entirely by the Digital object type.
You will only need to use the I2CBus object to communicate with devices where Venom doesn't
have built-in drivers, or to find out which devices are connected to the bus.

The default implementation of the I2C Bus object doesn't handle the I2C Repeated Start
condition. If you need to use Repeated Start then please see this page.

Summary of messages

http://vm2.localnet/index.html
http://vm2.localnet/upload.html

321 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Die

Find

Get

Locking

Put

Reset

Send

Print

Creation

Make <object> I2CBus
Make <object> I2CBus (Int bus_no)

Create an I2CBus object. If the parameter is not present then bus number 1 is assumed.

For example:

Make obj I2CBus

When a parameter is supplied it can take the values 1 or 2.

Note: an I2CBus object for Bus number 1, called net, is created in the default startup
procedure.

Die

Die

Die will reset the internal I2C Bus peripheral so that it no longer controls or responds to the SCL
and SDA channels, and so it draws no power.

The SDA and SCL channels are both set to floating inputs in the expectation that I2C Bus pull
ups will pull them up, if necessary.

If you need the channels to change to a different state then you will have to do this explicitly.

322I2CBus

Copyright © 2009-2021 Venom Control Systems Ltd

Find

Find (Int address)

This checks for the presence of a device on the network, returning True or False. It addresses
the device and checks for an acknowledge pulse.

 Find does its own locking, so explicit locking is not necessary.

Get

Get(Int address [, Int nbytes]) Int

Get takes the address of the I2C device and a number of bytes to retrieve from it (1 to 4), and
returns the bytes packed into an integer value. The optional parameter nbytes defaults to 1.

Big Endian

Normally the first byte received from the bus is consider to be the most significant byte of the
result - i.e. it is Big Endian (most I2C devices seem to be big endian).

Little Endian

However, you can get a Little Endian result (the first byte received is considered to be the least
significant byte of the result) by using a negative number for nbytes, for example:

net.Get(162, -2)

 Get does not lock the bus.

Repeated start condition

If you need to use a Repeated Start Condition please refer to this page.

Locking

I2CBus objects have a lock built into them. For the sake of good programming practice, we
recommend that all explicit transactions using an I2CBus object be locked, even if you only
have one task accessing the I2C Bus, as you may add another task later.

Example

To write

323 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 net . Lock
 net . Put(160, 12, 2)
 net . UnLock
End

Detailed description

Objects that use the I2C Bus implicitly, e.g. I2C digital, will handle all the locking for you.

Explicit locking of the I2C Bus is only necessary if both the following are true:

You are using an I2CBus object directly, by sending messages to it, such as net.
Put, ect.

~ And ~

You are using the same I2C Bus, either explicitly or implicitly through a client object, in
another task.

If both the above are true then you should lock around every explicit use of the I2CBus object.
You don't need to lock around implicit usage.

See also Locking in the Tutorial

Put

Put (Int address, Int data [, Int nbytes]) Int
Success

Put sends 0-4 bytes of data over the I2C Bus. You can also use Send.

The parameters are:

address: the I2C address of the device (this is an 8-bit address, i.e. twice the 7-bit address
typically given in device datasheets).

data: the data to send. If you are sending more than one byte then data holds all the bytes as it
is a 32-bit quantity.

nbytes: (optional) the number of bytes of data to send. Defaults to 1 byte. It is the least
significant of the bytes that are sent. If a value of 0 is used then the device is addressed, but no
bytes are sent. This is roughly what Find does.

Return value

The value returned by Put indicates whether it was successful in sending the bytes to the device.

324I2CBus

Copyright © 2009-2021 Venom Control Systems Ltd

Little Endian

If nbytes is negative it means send the bytes in Little Endian mode - i.e. the least significant
of the bytes is sent first.

Examples

net.Put(144,val) ; Send the byte val to the device at 144.
net.Put(162, address << 16 + data , 3); send two-byte address and data to an EEPROM
;(Note: address is Big endian and data must fit in 8 bits.)

 Put does not lock the bus.

 To send larger blocks of data, see the Send message.

Reset

Reset

Reset will force a re-initialisation of the I2C Bus peripheral module inside the MCU.

This will take account of the current system clock speed to produce the correct I2C Bus clock
speed.

Reset will not respect the I2CBus lock. You should use Lock, etc, around this message if
you want to respect the I2CBus lock.

Send

Send (Int address [, Int data1 ...]) Int Success

Send (Int address, Array data [, Int nbytes[, Int
Offset]]) Int Success

Send transmits larger amounts of data over the I2C Bus. It is an alternative to Put.

You can supply the data either as a list of individual parameters (up to 10), or as an array of 8-
bit values.

(The first parameter to Send is always the I2C address of the device you with to send data to.)

Sending an array

When an array is specified, all the data bytes in the array will be sent unless you supply the
optional parameter nbytes, which limits the number of bytes to send. You can also specify an
offset into the array, to where your data starts, with the optional parameter Offset.

325 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Return value

The value returned by Send indicates whether it was successful in sending all the bytes to the
device.

Examples

net.Send(144, val) ;Send the byte val to the device at 144.
net.Send(162, val1, val2, val3);send three bytes
net.Send(144, my_array) ;Send all the bytes in the array.
net.Send(144, my_array, 2) ;Send two of the bytes in the array.
net.Send(144, my_array, 2, 3) ;Send two of the bytes in the array, starting with element 3.

 Send does not lock the bus.

Printing

Print <I2CBus>

Printing an I2CBus object generates a list of all the devices connected to bus:

-->Make net2 I2CBus(2)
-->Print net2
Devices on the I2C network No.2:

Number Channels Device Description
------ -------- ------ -----------

 124 496-503 PCF8574A 8 digital I/O lines
 126 504-511 PCF8574A 8 digital I/O lines
 162 PCF8582/83... RTC/EEPROM...

Note that this feature can only guess the devices attached to the bus, as there are some devices
that map onto the addresses of the more common devices.

Software based driver

Because the hardware-based driver doesn't easily handle the Repeated Start Condition we've
also implemented a software-based driver for the I2C Bus.

To use this driver you must do the following:

If your code has already defined any I2CBus objects, remove them:

net.Die ; remove any existing I2CBus objects.

326I2CBus

Copyright © 2009-2021 Venom Control Systems Ltd

Then signal that you want to use the software-based drivers from now on:

Debug(25) := True ; flag to force creation of software-based bus.

Then remake the bus:

Make net I2CBus(1) ; Remake the I2CBus object.

To use the Repeated Start you first have to signal that an I2C packet should end without sending
a Stop Condition.

You can do this by sending the I2C Put message with an extra parameter that has the value
True or 1, for example:

net.Put(126,$55,1,1)

Because the previous packet ended without a Stop Condition, the next packet's Start Condition
will be a Repeated Start:

net.Get(127,1)

IProt

IP stands for Internet Protocol. The protocol is concerned with addressing and routing packets
on the Internet, and with certain test and housekeeping functions.

An IP object does not have to be created in order for IP to be used for routing and addressing
incoming and outgoing IP datagrams, nor for TCP or UDP connections. The IP module
autonomously handles routing, accepting IP address registration from the PPP module and
Ethernet modules, creating a loopback interface on 127.0.0.1 and routing packets between TCP
clients, the PPP links and (if/when available) the Ethernet interface. The module also replies to
any incoming ICMP echo (ping) requests.

A Venom IP object can be created to enable certain services:

Testing the network using the Time message, which acts like the well known "ping"
utility.

Converting Dotted Quad IP addresses and domain names into numerical IP addresses.

A general TCP/IP interface polling function.

Assigning names to local IP addresses.

See also TCP/IP Networking

Summary of messages

327 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Address

Debug

Find

Go

Print

Time

Creation

Make <object> Iprot

Creates an IP object. The object can be used as a tool for finding information about the
network, but is not essential for the operation of IP based protocols such as TCP and UDP.

Address

Address (str name) ipaddress

name can be a string or a text buffer.

This stores the association of a symbolic name with a numerical IP address (integer or dotted
quad string) in a local table. This may be useful for local networks so hostnames can be used
without a DNS server. Any number of addresses can be assigned this way.

Example

Note the code examples in this section also illustrate the "IP" Print modifier which displays an
integer in the dotted-quad notation conventionally used for IP addresses.

-->ip.Address("printer") := "192.168.1.250"

-->Print ip.Address("printer"):"IP", CR
192.168.1.250
-->

Address (host) Int

Converts a hostname or IP address in dotted quad notation to a numerical IP address. If the
host string contains only numerals and dots it is assumed to be a dotted quad IP address,
otherwise is it treated as a host name and will either return an address that was previously
assigned by the first form of the Address message or if not in the list will be found by DNS
lookup like ip.Find.

Examples

328IProt

Copyright © 2009-2021 Venom Control Systems Ltd

--> Print ip.Address("www.venomcontrolsystems.co.
uk"):"IP", CR

109.75.171.120
-->
-->a := ip.address("80.10.20.30")
-->print a, CR
1342837790
-->print a:"IP",CR
80.10.20.30
-->

Address (str addr, 0) Int

As above, except the string must only be in numeric dotted-quad notation. Any invalid string will
generate run time error 26, which can be trapped with Try/Catch enabling this to be used for
validation of IP address strings.

Debug

Debug(0, file f)

Enable logging of information about packets sent and received. f must be an open writable text
file.

Debug(0, 0)

Stops logging of packet info.

Debug(1)

Prints the routing table (same as Print ip)

Debug(2)

Prints the list of host names and IP addresses created by ip.Address.

Find

Find(String str) Int

The parameter can be a fixed string or text buffer.

Performs a DNS query to convert a domain name or hostname into an IP address. The names
"localhost" and "loopback" are recognised and converted automatically to 127.0.0.1. All other

329 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

names require an internet connection so the names can be looked up with a nameserver.

Find(Int n) Int

Returns IP address of name server in use, or assigns the address of a nameserver to use. n can
be 0 or 1 denoting the two nameserver addresses that are tried in succession.

Both PPP and Ethernet have mechanisms for finding the address of a usable nameserver, so a
nameserver does not usually have to be assigned this way.

Go

Go(Int milliseconds)

Polls all IP interfaces at regular intervals for the length of time specified.
If no parameter, or a value of 0 is supplied, polls forever and does not return. This is sometimes
useful if you want interfaces to respond to activity like "ping" requests, but do not have have a
TCP or UDP interface active or listening all the time.

PRINT

Print <Iprot>

Prints the routing table. The default routing table only contains the localhost address 127.0.0.1.
When a PPP connection is made, its address is added to the routing table and becomes the
default route. The Ethernet object can also add network and host addresses and a default route
to the routing table. (see Ethernet.Address)

Time, Period

Time (Any host[, Int Timeout]) Int
Period (Any host[, Int Timeout]) Int

Returns time to respond to ICMP echo request ("ping") in milliseconds. If there is no response
after 10 seconds a value of -1 is returned.

host is either a string containing a domain name or dotted quad IP address, or an IP
address as an integer

Timeout if specified, overrides the 10 second default timeout in milliseonds

Period is a synonym for Time.

330IProt

Copyright © 2009-2021 Venom Control Systems Ltd

Keypad

The Keypad object is used to interface to a variety of keypads. Most keypad drivers consist of
one or more PCF8574 ICs on the I2C Bus controlling the rows and columns of a key matrix.
However, one type of keypad scans ‘virtual’ keys on a TouchScreen object.

By switching on the Keypad's InputBuffer function you can automate many of the functions most
applications need a keypad to perform.

Summary of messages

Make

Asserted

Flush

Get

GetLast

InputBuffer

Key

Period

Queue

Time

Update

Creation

Make <object> Keypad (Int type, Int chan1 [, Int chan2]
)

Make <object> Keypad (TouchScreen ts)

There are two forms of the Make command for Keypad, one for matrix keypads, and one for
use with a TouchScreen ‘virtual keypad’. In operation the two types of keypad are very similar.

Matrix Keypads

The parameters are as follows:

type: keypad type; see the table below.

chan1: Channel number indicating a PCF8574 IC

chan2: Channel number indicating a second PCF8574 IC (only for 8 by 8 and 12 by 4
matrixes)

331 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Matrix Type
Parameter

No. of
PCF8574
needed

How rows and columns map onto PCF8574(s)

4 by 4 0 1 needed First four channels: columns

Last four channels: rows

8 by 8 1 2 needed First PCF8574: columns

Second PCF8574: rows

12 by 4 2 2 needed Channels 4-7 of the 1st PCF8574: rows 0-3

Channels 0-3 of the 1st PCF8574: columns 8-11

2nd PCF8574: columns 0-7

Key numbering starts at 0 (zero) for the key at the first row/column position. The first row (or
column) is the one with the lowest channel number. Key 1 is on the same row, next column
along, and so on.

Any subset of a matrix may be supported, for example a 12 by 3 matrix may be implemented by
the 12 by 4.

Examples:

Make kpd1 Keypad (0,168) ;4x4 keypad, PCF8574
Make kpd2 Keypad (0,248) ;4x4 keypad, chip 1, PCF8574A
Make kpd3 Keypad (0,240) ;4x4 keypad, chip 2, PCF8574A
Make kp Keypad (1,240,248);8x8 keypad, chips 1 & 2, PCF8574A
Make kpd Keypad (2,240,248);12x4 keypad, chips 1 & 2, PCF8574A

Touchscreen Keypad

In this case there is only one parameter to the Make: the TouchScreen object. See
TouchScreen for details of how to define the Touchscreen object and its virtual keys.

Make kpd Keypad (ts)

Each Keypad uses around 28 bytes of memory.

Asserted

Asserted Int

Asserted returns True if any of the keys on the keypad are currently being pressed. The GetLast
message will tell you which key it was.

332Keypad

Copyright © 2009-2021 Venom Control Systems Ltd

See also Key, GetLast, Get

Flush

Flush

Clears out the keypad's input buffer.

Get

Get Int

Get waits for a key press and then returns the result. If no key is pressed then Get will wait
indefinitely.

The operation is slightly different depending on whether you are using the InputBuffer
functionality.

Normal operation

Get waits for no keys to be pressed on the keypad, then waits for a key to be pressed, and
returns the logical key number of the key pushed.

InputBuffer operation

Get waits until a key press appears in the input buffer. For this to happen you must have a
separate task repeatedly sending the Update message to the keypad. For this reason it's not
usual to use Get when you are using an InputBuffer.

 InputBuffer

Note: When two keys are pressed at the same time a special 'key' value is returned,
guaranteed to be larger than any legal key value.

GetLast

GetLast Int

Returns the key number of the key that caused the last Asserted message to return True.

Note: When two keys are pressed at the same time a special 'key' value is returned,
guaranteed to be larger than any legal key value.

See also Asserted.

333 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

InputBuffer

InputBuffer(Int rpt_pd [, Int rpt_del])

InputBuffer

There is an 'Input Buffer' function inside a Keypad object that provides higher functions that the
basic Keypad doesn’t have: Auto Repeat and Key Press Buffering. These can help to simplify
your keypad input routines.

Auto repeat is when multiple key presses are requested by holding a key down.

Key press buffering is used to detect and store key presses for later use.

For the InputBuffer functions to work correctly, the Keypad must be given regular calls to its
Update message, say from inside an Every loop.

Currently the key buffer holds only one key press - this is usually the most that is needed.

To turn on the input buffer function the InputBuffer message is sent to the Keypad object.

This message takes two parameters: the auto-repeat period, and auto-repeat delay.

rpt_pd is the time between each auto-repeat of the key when a key is held down. It is measured
in multiples of the Keypad’s Update period. If this parameter is not present, then it defaults to
zero. If the repeat period is set to zero auto-repeat is turned off.

rpt_del is the time taken before auto-repeat starts, also in multiples of the Update period. If this
optional parameter is not present it defaults to the repeat period.

Turn off auto-repeat

If you want to just turn off auto-repeat, but keep key press buffering you should call use this:

kpd . InputBuffer(0) ; Turn of Auto-Repeat

Turn off all input buffer functions

Calling InputBuffer with no parameters turns off input buffering completely (both auto-repeat and
key press buffering)

kpd . InputBuffer

Example

The example below uses an InputBuffer to provide auto-repeat on some keys that alter the value
of the variable target_temp.

Note that the keypad scanning (kpd.Update) is done in the same task as the key actions.
Sometimes you may need to put it in a separate task, but this is rare.

334Keypad

Copyright © 2009-2021 Venom Control Systems Ltd

Make kpd Keypad(0,496) ;Make the Keypad object
kpd.InputBuffer(2,15) ;Turn on key buffering
...

#define DN_KEY 0
#define UP_KEY 1
#define Exit_KEY 3

Every 50 ;Keypad scan period
[
 kpd . Update ;Scan the Keypad
 the_key := kpd.Key
 If the_key >= 0 ;Any key pressed?
 [
 Select Case the_key ;Select an action for each key
 Case DN_KEY
 [
 If target_temp > MIN_TEMP
 target_temp := target_temp - 1
]
 Case UP_KEY
 [
 If target_temp < MAX_TEMP
 target_temp := target_temp + 1
]
 Case Exit_KEY
 [
 Break ;Drop out of this menu
]
 Case Else
 [
 buzz_wrong_key
]
]
]

Key

Key Int

Key has two different modes of operation, depending on whether InputBuffer has been set up.

335 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

With InputBuffer

Key will return the number of any key press that has been detected and stored in the buffer,
or -1 if no key press was detected. The Update message has to be called regularly for this to
work.

Code Example

Note: When two keys are pressed at the same time a special 'key' value is returned,
guaranteed to be larger than any legal key value.

Without InputBuffer

Key returns the number of any key that is currently being pressed, or -1 if no keys are being
pressed.

Example:

Every 50
[
 Select Case kpd.Key
 Case 0
 [
 ; Do key 0 action
]
 Case 1
 [
 ; Do key 1 action
]
 Case Else
 [
 ; 'No key' action
]
]

Note: When two keys are pressed at the same time a special 'key' value is returned,
guaranteed to be larger than any legal key value.

See also Keypad.InputBuffer.

336Keypad

Copyright © 2009-2021 Venom Control Systems Ltd

Period

Period Int

Period allows the value of the auto-repeat period to be set and read. Note that the new value of
Period won’t take effect until the next auto-repetition.

This may be used to implement an accelerating auto-repeat function, for example:

Make kpd Keypad (0,496)
kpd.inputbuffer(10,20)

Start Every 30 kpd.Update

Every 10
[
 If kpd.Time >= 50
 kpd.Period := 2
 Else
 kpd.Period := 10

 Select Case kpd.Key
 Case 0
 Print "key0",kpd.Time, CR
 Case 1
 Print "key1",kpd.Time, CR

]

See also Time

Queue

Queue Int

Returns the number of keys in the buffer: only zero or one currently.

Time

Time Int

Time returns the number of Update cycles the current Key has been held down for. This
doesn’t get reset when the key is released (only when the next is pressed), so it is also the time
the last key pressed was held down for.

This may be used to implement an accelerating auto-repeat, as well as other useful functions.

337 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

See also Period, which includes a code example.

Update

Update

This message is only relevant if an InputBuffer has been set up. Update checks the keypad for
key-down and key-up events and uses them to update the InputBuffer.

Update should be called regularly, say from within an Every loop. The loop may contain other
code, so long as it doesn’t upset the loop timing while you are scanning for keys. It's usually OK
to break the normal loop timing to act on the key presses that are detected, since most
applications don't care about the next key press until the previous action has been completed.

A typical loop period is 50mS though you should experiment with your set up to determine the
optimum period.

See here for example code.

NIL

Nil is a special object that is used as a placeholder for any other type of object, or to represent
‘no object’.

Nil will accept any message, and will return False to all of them.

It is useful for situations where, in the normal course of events, an object is used but sometimes
you wish to allow for situations where ‘no object’ needs to be represented.

The most common example of this is substituting the value Nil for an output stream object, for
when you want Print output to be discarded:

lcd := Nil ;all Print To lcd will now be discarded.

Testing for Nil is done with = or <>, as follows:

If lcd = Nil
[

]

Summary of messages

All messages are accepted

338NIL

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

obj := Nil

The value Nil is defined in Venom so you don’t need to use Make or New to get a Nil object.

Nil is a Zero-Memory object

NumberReader

NumberReader is for entering numbers, typically using a Keypad, as on a calculator or
telephone. For visual feedback the digits of the number may be printed to a display device (e.g.
an LCD) as the number is being entered.

It is easy to create number-entry routines to enter integer, floating-point, or hexadecimal
numbers, or secret PIN numbers. The displayed text may be initialised to any text string to
prompt the user – either with a default value, or with any other text.

Summary of messages

Make
Close
Empty
Length
Mapping
Output
Put
Reset
Value
Width
Print To
Print

Creation

Make <object> NumberReader
Make <object> NumberReader ([Int base [, Int max_width
]])

The optional parameter base determines what number base to use for converting numbers. The
default base of 10 is assumed, for decimal numbers. For for hexadecimal numbers use 16.

339 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

The second (optional) parameter max_width allows a maximum number of digits in the
displayed number (including any decimal point and minus sign characters) to be specified. The
default width is 10 digits. Once the NumberReader is 'full', further key presses will be ignored.

On creation, the NumberReader's buffer is set to "0", and the buffer is 'Closed' - i.e. will be
over-written at the next Put. This gives calculator-like behaviour. If you need the buffer to be
empty, or to show some other text, use Empty, or Print into the NumberReader.

Examples

The first of the following examples creates a decimal NumberReader with the default maximum
field width; the second example creates a hexadecimal NumberReader that will only accept
numbers with up to 4 digits.

Make n1 NumberReader
Make n2 NumberReader (16,4)

The Put message is what does most of the work of a NumberReader.

See also Conversion, Width, Accepting Print; the Keypad object

Close

Close

Close indicates to the NumberReader that the current buffer contents should be over-written at
the next Put.

Empty

Empty

Empties the NumberReader's buffer. This is different to Reset.

See also Print, Accepting Print

Length

Length Int

Length returns the number of characters in the Print output buffer.

340NumberReader

Copyright © 2009-2021 Venom Control Systems Ltd

Mapping

Since different keypads have different mappings between key function (as indicated by the
identifier on the key cap) and the logical key number we need a way to specify to the
NumberReader which keys are to be used for which purpose. The Mapping message does this.

(The logical key number is the number returned by Keypad.Key, etc, when you press a key.
On a 4 x 4 matrix keypad the logical key numbers typically range from 0 - 15.)

Note that if there are keys mapped to the Decimal Point and/or Minus functions then places are
reserved for these characters in the number buffer width.

You can either map all the key functions in one call to Mapping, or set them individually.

Mapping all the keys at once

Mapping
(
 Int Decimal_key,
 Int Minus_key,
 Int Delete_key,
 Int Dig0, Int Dig1, Int Dig2, Int Dig3, Int Dig4,
 Int Dig5, Int Dig6, Int Dig7, Int Dig8, Int Dig9,
 Int DigA, Int DigB, Int DigC,
 Int DigD, Int DigE, Int DigF
)

The 13 or 19 parameters to Mapping are explained here:

The first three parameters list the logical key numbers of the special function keys
decimal point, minus and delete.

The next ten parameters list the logical key numbers of the decimal digit keys, that
represent digits 0-9.

The last six parameters list the logical key numbers of any extra hexadecimal digit keys,
that represent digits A-F.

The three special functions are listed, in parameter-list order, in the table below, together with
details of their actions:

Function Action

Decimal Enter a decimal point; only one will be allowed in any number

Minus Adds or removes a minus sign to the left of the number

Delete Removes the last digit entered; may be done repeatedly

341 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If any particular special function is not required then the entry in the Mapping parameter list
should be ‘-1’ to indicate 'no key'.

Mapping may be re-sent at any time to change the functions of the keys.

Here is an example of the use of Mapping. Note how the Delete function is disabled by being
assigned to key ‘-1’:

#define DECIMAL_KEY 3
#define MINUS_KEY 12
#define DELETE_KEY -1

nr . Mapping ;Assign functions to keys on the keypad.
(
 DECIMAL_KEY,
 MINUS_KEY,
 DELETE_KEY,
 ;Digits 0-9 on these keys:
 13,0,1,2,4,5,6,8,9,10
)

Mapping individual keys

obj.Mapping(Int index) := Int key_value

You can also access individual keys in the key map:

nr.Mapping(0) := 5 ; Set the logical key for decimal point.

Output

Output (Int dummy_char)

Output sets a dummy character to be printed instead of the actual digits entered, so that numbers
may be entered secretly.

Setting Output to zero turns off ths 'secret mode'.

342NumberReader

Copyright © 2009-2021 Venom Control Systems Ltd

nr.Output := '*' ; Print stars instead of real digits.

Put

Put (Int Key) Int

Put is used to send logical key numbers to the NumberReader, which it interprets as digits or
special functions using the mapping given by the Mapping message.

Put takes one parameter: the logical key number to be sent to NumberReader. Key numbers
are often read from a Keypad object, but can come from any other source.

Put returns True if the Key was acted on. If the

To provide visual feedback of the number being entered, the partially assembled number may be
displayed by printing the NumberReader object to an output device.

Example Code

; Keypad Map:
; Key Tile Legend
; 1 2 3 F
; 4 5 6 E
; 7 8 9 D
; A 0 B C
; Associated Function
; 1 2 3 'Float' (dec point).
; 4 5 6 Enter
; 7 8 9 Delete
;'-' 0 [spare] Cancel
; Logical Key number
; 0 1 2 3
; 4 5 6 7
; 8 9 10 11
; 12 13 14 15

;Put names to some logical key numbers.
#define ENTER_KEY 7
#define CANCEL_KEY 15

#define DELETE_KEY 11
#define DECIMAL_KEY 3
#define MINUS_KEY 12

To init
 Make lcd AlphaLCD (20 2 0) ;The display device

343 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 Make kpd Keypad (0,248) ;The keypad device
 Make nr NumberReader (10,8)
 nr . Mapping ;Assign functions to keys on the keypad.
 (
 DECIMAL_KEY,
 MINUS_KEY,
 DELETE_KEY,
 ;0-9 on these keys:
 13,0,1,2,4,5,6,8,9,10
)
End

To test_num_reader
 Local key_num
 Local def := 123.45 ;Our default value
 Print To nr, def:5:2 ;Set default value text
 ; nr.Reset ;[use this if line above not used]
 Do
 [
 Print To lcd, Home, nr ;Visual feedback on LCD
 key_num := kpd.Get ;Get a key number
 nr . Put(key_num) ;Give it to the NumberReader
]
 While key_num <> ENTER_KEY
 Or key_num = CANCEL_KEY ;Exit when 'Enter' or 'Cancel' key seen
 Print nr.Value , CR ;Report the result
End

The code reads digits at the keypad and displays them on an LCD. When either the ENTER or
CANCEL key is pressed the code reports the value of the number entered.

The number is given a default value of 123.45.

Reset

Reset

Resets NumberReader's buffer to "0".

It also 'Closes' the buffer, so that the next key press will overwrite the "0", just like on a
calculator display.

If you want to completely empty the buffer then use Empty.

See also Print, Accepting Print

344NumberReader

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value Int or Float

Returns the value of the number currently held in the Number Reader buffer.

Value will return an integer if there was no decimal point in the assembled number, otherwise it
will return a floating-point value.

If you only want integers then don’t assign a decimal point key in Mapping.

If you only want floating-point values then use obj.Value As Float to read the value.

If you want to detect the type of the returned value use the TypeOf function:

If TypeOf nr.Value = TypeOf 1.0 ;is it a float?
[

]

By detecting the type of the value it is possible to prompt the user to enter a decimal point if you
require them to do so.

For visual feedback it is better to print the number reader object itself, rather than Value.

See Printing

Width

Width Int

Sets (or reads) the maximum number of characters allowed in a number, including any minus sign
or decimal point. Any key presses that would increase the number of characters beyond this
width are ignored. If the Minus or Decimal functions are mapped, then a space is always
reserved for each of these characters: numeric digits won’t be allowed to fill the whole width.

The maximum value for width is 34.

See also: Creation, Put, Accepting Print

Accepting Print

Printing to a NumberReader will put text into the NumberReader's buffer. This text need not
always be a valid number.

However if you put an invalid number into the buffer then it is advisable to use Close so that it is
overwritten by subsequent keypresses.

Examples:

345 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

def_val := 123.45
nr . Width := 8
Print To nr1,def_val:4:2

-->Print nr
 123.45

Or…

Print To nr1,"Power"

-->Print nr
 Power

Text printed to a NumberReader is processed as follows:

Space characters at the start of the text are stripped off.

If the text exceeds the current fieldwidth of the NumberReader then the rightmost
characters are lost.

 PrintF may also be used to send text to a NumberReader.

Printing

Print <object> :fw

Printing a NumberReader prints the characters of current number it has assembled. If a
fieldwidth (fw) is supplied then it will print right justified in the given fieldwidth, with any padding
to the left being made up of zero or more space characters.

NumberReader holds the digits it has assembled in a buffer so that the number may be printed as
it is being assembled, and afterwards. This buffer is not overwritten until Reset or Empty is sent,
or the NumberReader is ‘printed-to’.

 See also: Value

OnBoardLED

OnBoardLED controls the behaviour of the LED mounted on the VM2 board, and also channel
15, which the LED is attached to.

The LED may be told to turn on or off, flash various patterns and at various rates, so it may be
used to signal the current state of the VM2 to users.

Summary of messages

346OnBoardLED

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Asserted

Flash

Off

On

Toggle

Print

Creation

Make <object> OnBoardLED

The OnBoardLED object is created with the LED turned off. (Note that in the default startup
routine, the OnBoardLED object is created, and then set to flash pattern $80 if the VM2 is in
run mode, and then turned off if the application ever terminates back to the command line).

OnBoardLED is a Zero-Memory object

Asserted

Asserted Int

An active variable that allows the state of the OnBoardLED object to be read or set. It returns
True if the LED is on, and False otherwise. When setting the OnBoardLED via Asserted - True
turns the LED on, and False turns it off.

Flash

Flash (Int pattern)

Makes the LED flash in a pattern.

The flash pattern is given by the binary bit pattern of the parameter.

(There are two exceptions: 0 means turn the LED off, 1 means turn it on constantly).

Everywhere there is a 1 in the binary representation of the pattern, the LED is turned on for
~1/8th of a second (actually 128mS), else it is turned off for the same time.

The pattern is shifted to the right - and ends when there are no more 1 bits left.

Example patterns are given below - but you can create your own.

Pattern in Pattern in binary Description

347 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

hexadecimal

$80 %10000000 Short flash approximately once a
second

$A0 %10100000 Two short flashes approximately once
a second

$A8 %10101000 Three short flashes approximately
once a second

$A9DDCA80 %10101001110111011100101010000000Signals "SOS" in Morse Code

$3AE77700 %00111010111001110111011100000000Signals "OK" in Morse Code

Off

Off

Turns the LED off.

On

On

Turns the LED on.

Toggle

Toggle

Inverts the state of the LED.

Printing

Print <OnBoardLed>

Prints "ON " or "OFF" (always three characters) depending on the state of the LED.

348OneWire

Copyright © 2009-2021 Venom Control Systems Ltd

OneWire

The OneWire object is a Dallas 1-Wire™ Bus driver. This bus uses a single wire to carry
power and data to a distributed network of devices. The communication protocol is detailed in
Dallas documents and device datasheets.

Summary of messages

Make

Checksum

Find

Get

High

Low

Put

Reset

Print

One of the most important features of the 1-Wire bus is that every device manufactured for the
bus has a completely unique 64-bit serial number burned into it’s ‘ROM’. This means that any
device connected to your application can always be addressed uniquely.

The first 8 bits of the 64-bit serial number are the family code that indicates what capabilities the
device has; i.e. what commands it will obey, and maybe what memory capacity it might have.

The last 8 bits of the serial number are a CRC (Cyclic Redundancy Check) of the previous 56
bits. This provides a high level of data-validation when using the serial number to address
devices.

1-Wire Protocol

Briefly, the 1-Wire bus master (VM2) reads and writes data on the bus by pulling the bus low
for long or short pulses to indicate 1’s and 0’s. Timing is not very critical.

1-Wire bus communications always follow a very simple sequence:

Reset

This initiates a communication by putting all the devices on the bus into the initial state. Reset will
elicit a response from every device on the bus called the ‘presence pulse’. This may be used to
determine whether there are any devices connected.

ROM command

This addresses a unique device on the bus – either by assuming it is the only device present, or
by addressing a device by its unique serial number.

SEARCH ROM and MATCH ROM should be used when more than one device could be
connected to the bus.

349 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Command Code Decription

SKIP ROM $CC Address all the devices on the bus at once – or
just one device if only one is present.

MATCH ROM $55 Address just one device by sending its ROM
data to the bus after this command.

READ ROM $33 The next 8 bytes read are the ROM data of the
one device on the bus.

SEARCH ROM $F0 [Use the Find message to do this for you, as
SEARCH ROM can’t be used directly]

Transport layer command

This is generally a data transfer operation where one or more bytes of data are transferred either
to or from the bus.

Command Code

READ MEMORY $F0

WRITE SCRATCHPAD $0F

READ SCRATCHPAD $AA

COPY SCRATCHPAD $55

The details of how to use these commands are beyond the scope of this help file. Please read
the Dallas 1-Wire bus documentation or the device datasheet for further information.

The bus communication can end at any point in this 3-stage sequence. For example you may
just want to issue a Reset command to determine whether any devices are present.

New device on the bus

When a device is first connected to the 1-Wire bus it will issue a presence pulse without being
prompted by a reset from the bus master.

If you want to detect these new device presence pulses then it is possible to use a PulseWidthIn
object to detect them. This simple application prints out the devices it finds on the bus every
time a new one is added.

To init
 Make detect PulseWidthIn ($18, 1)
 Make b OneWire($18)
End

350OneWire

Copyright © 2009-2021 Venom Control Systems Ltd

To main
 Forever
 [
 detect.go
 Await detect.Done
 Wait 1 ; Debounce
 Print b
]
End

High-current Pull-up

Some 1-Wire devices need a high-current pull-up during certain parts of the 1-Wire
communication in order to function correctly. See Creation and the High and Low messages.

Limitations

This implementation of the 1-Wire bus does not cover 1-Wire interrupts of either type, nor does
it cover Overdrive speed.

It has not been determined whether it covers the programming of 12V EPROM devices.

Creation

Make <object> OneWire(Int data [, Int pullup])

data is the channel to use for the data line.

pullup is the optional channel to control the high-current pull up transistor required by some 1-
Wire devices such as temperature sensors. See High and Low.

Which ever channels are used are configured by the Make as Open Drain outputs and will need
pull up resistors fitting in order to make them work correctly.

Currently the only valid values for data and pullup are $18 and $78:

Make owb OneWire ($18)
Make owb OneWire ($18 , $78) ; use active pull-up.

Checksum

Checksum Int
Checksum(Int select) Int

Checksum is an active variable that sets and reads either of two CRC accumulators kept by the
OneWire object. The 1-Wire bus uses two types of CRC extensively in its operation: an 8-bit
CRC and a 16-bit CRC. The optional parameter select chooses which CRC is accessed.

351 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Every Put to the bus or Get from the bus using the OneWire object updates both of these CRCs
with the value of the data byte read or written. This can then be used to implement the protocols
for data validation described in the Dallas literature.

In particular, when reading the 64-bit ROM data from a device, the last 8-bits are an 8-bit CRC
of the previous 56 bits. The definition of the Dallas 8-bit CRC is such that the total CRC of all
64-bits will be zero.

The Find message and Print use this CRC internally to determine the validity of the data they are
reading.

The 16-bit CRC (or CRC-16) is generally used for validating the larger amounts of data
transferred during data storage/retrieval operations on the 1-Wire bus.

The CRC-16 is normally used in an inverted form, where the two bytes of CRC sent after the
data are the value of this expression:

Inv owb . Checksum(1)
(The least significant byte should be sent first.)

When reading a block of data including the inverted 16-bit CRC, the final CRC value read will
be $B001.

The CRC-16 is also normally initialised to the value of the page number of the memory being
addressed to provide security of addressing as well as data.

See the Dallas literature for a deeper explanation of these issues.

Examples

owb . Checksum ; returns the 8-bit CRC value
owb . Checksum(0) ; returns the 8-bit CRC value
owb . Checksum(1) ; returns the 16-bit CRC value

owb . Checksum := 0 ; sets the 8-bit CRC value
owb . Checksum(0) := 0 ; sets the 8-bit CRC value
owb . Checksum(1) := val ;sets the 16-bit CRC value

Find

Find uses the 1-Wire bus SEARCH ROM command to get each unique 64-bit ROM serial
number for each of the devices connected to the 1-Wire bus. The 1-Wire bus’s MATCH
ROM command can then be used to address any one device individually.

Find (Int max_devices , Int data_addr) Int

data_addr is an address in RAM to put the ROM data. The best way to get some memory is
to create a writable Array and use its Address message.

352OneWire

Copyright © 2009-2021 Venom Control Systems Ltd

Take care when passing the value of data_addr as getting it wrong may cause the system to
misbehave in an unpredictable manner.

max_devices limits the amount of serial number data and should be set in relation to the
maximum capacity of the array. Since a 1-Wire ROM is 8 bytes long, max_devices should be
less than the array capacity divided by 8.

Find will return the number of device ROMs it has found, even if that number exceeds
max_devices. If there were no devices present, or there was a CRC error in any of the data
then Find will return zero.

After a successful Find, the Array will have each device’s unique ROM data in successive 8-
byte blocks.

The order of bytes in within the 8-byte block is least-significant byte first. The ordering of
devices within the whole array is based on the 1-Wire bus SEARCH ROM algorithm, where
zero-bits in the least significant bit positions take the highest priority. This will automatically tend
to sort devices according to family type, though not in normal numerical order.

To init
 Make b OneWire ($18)
 Make data_store array (8, 64, 0)
End

To main
 roms_found := b . find(data_store.length Div 8 , data_store.pointer)
 Print "found:",roms_found,cr
End

See also Print, Put

Find is currently limited to 255 devices.

Get

Get will read one byte, or a block of bytes, from the 1-Wire bus:

Get Int

… reads a single byte from the bus.

Get (Int n_bytes , Int data_addr)

… reads n_bytes from the bus and puts them in memory at address data_addr.

Every byte read from the bus is combined with both CRC accumulators held by the object to

353 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

keep a running total of the overall CRCs. These CRC values may be accessed using Checksum.

The data_addr parameter is usually found by taking the Address of an Array. Take care when
passing the value of data_addr as getting it wrong will cause the system to misbehave in an
unpredictable manner.

See also Checksum

High

High will turn on the active pull-up channel immediately after the next byte written to the bus. If
a suitable MOSFET is connected then a high current pull-up is applied to the bus until the Low
message is issued.

b . High ;high-current pull-up on after …
b . Put(byte) ; … this byte.
Wait 11 ;wait for a minimum of 10 ms.
b . Low ;pull-up off.

See also Low

Low

This immediately turns off the high current pull-up channel.

See also High

Put

Put will write one or many bytes to the 1-Wire bus.

Put (Int byte)

… writes a single byte to the bus.

Put (Int n_bytes , Int data_addr)

… writes n_bytes from the memory address data_addr to the bus.

You can use both of these when building up commands, such as MATCH ROM:

To match(n)
 b.reset ;initiate communuication.
 b.put($55) ; ‘$55’ is the MATCH ROM command.
 b.put(8 , data_store.pointer + 8*n) ;send the ROM id
 ;for the device.
;we have now addressed a single device…
End

354OneWire

Copyright © 2009-2021 Venom Control Systems Ltd

Every byte written to the bus is combined with both CRC accumulators held by the object to
keep a running total of the overall CRCs. These CRC values may be accessed using Checksum.

See also Checksum

Reset

Reset Int

Reset puts a reset pulse on to the 1-Wire bus and returns a positive number if there was a
‘presence pulse’ detected – i.e. there were one or more devices detected on the bus.

If there was no presence pulse detected Reset will return zero.

Example

Make b OneWire($18)
If b . Reset ; Any devices present?
[

]

Reset is used to initiate all command sequences on the 1-Wire bus.

 See also New device on the bus.

PRINT

Printing the OneWire object tells you the object type and lists all the devices connected to the
bus. The format emulates the CRC, family code and serial number stamped on to the stainless
steel can on Dallas iButtons:

-->Make b OneWire($18)
-->Print b
One Wire Bus:
00 14
000000ABCE06
7F 14
000000AC3B4D
17 01
0000082413C4
2F 01
00000822DB02
AD 23
000000175AAA
1A 23

355 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

0000000283B1
C1 23
0000001760C3
7 Devices found.

If there was a CRC error during the print, then this will be indicated:

-->Print b
One Wire Bus:
00 00
000000000000
CRC-error - try again.

OperatingSystem

The OperatingSystem object system, defined in the default startup routine, provides access to
system-wide features of the hardware, operating system and compiler.

Note that Venom2 allows some system messages to be called by just typing the message name
alone:

Run

Reset

Debug

PrintF

Protect

So

Reset
Is the same as

system.Reset

Summary of messages

356OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Checksum

Copy

Count

Debug

ErrorAction

Free

Key
Low

Output

Protect

Reset

Run

RunMode

Speed

Time

Valid

Print

Creation

Make <object> OperatingSystem

An object called system of type OperatingSystem is made by the default startup routine:

Make system OperatingSystem

Checksum

Checksum int

Computes a checksum of all the operating system code.

This is used by us to set up the correct internal value for the Valid message.

Copy

obj.Copy(Int dest, Int source, Int size)

The Copy message is intended for situations where you need to move some data within
memory, but Venom doesn't provide a suitable mechanism.

The Copy message will move a given number of bytes from the source memory address to the
destination memory address. The move operation will work correctly even if the source and

357 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

destination overlap.

Parameters

dest: the destination address

source: the source address

size: the number of bytes of memory to move

Warning

 The source and destination addresses, and the size, are not checked for safety. If they are
not correct then the results are unpredictable.

Count

Count Int

This system variable is incremented every time the system restarts. It is used internally to make
sure that certain processes do not initialise identically each time the VM2 is restarted or reset,
and it can also be used to count the number of times the VM2 has been restarted.

The count value is only valid if the system has a battery-backed external RAM. It will contain a
random value if you have not initialised it.

Count is a signed 32 bit value.

Example

Reset the count by hand:

-->System.Count := 0

Print the count at startup:

To main
 Print system.Count, CR
End

Debug

Debug (Int n, …) Any

The debug operating system message has options allowing the internal state of the Venom2
compiler & OS to be viewed and modified, as well as other more sophisticated functions.

Debug is allowable shorthand for System.Debug.

Typing Debug with no parameters will list all the available options, e.g:

358OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

-->debug
System Debug Command
Debug (0) Heap Dump, Debug (0, 1) check heap => error code
Debug (1, flgs) Garbage scan
Debug (2,n) Code position
Debug (3) Runtime debug flags
Debug (4, addr[,lines]) Mem Dump
Debug (5) Keywords
Debug (6) System Version
Debug (7) Compile code from object
Debug (8) No. of tasks running
Debug (9,n) Stack usage
Debug (10) Analyse code
Debug (11) SRAM test
Debug (12) Ext. Flash device code
Debug (13) Runtime error list
Debug (14) Reset-source flags
Debug (15) Erase on board Flash
Debug (16) Set/read internal flash Write Protection state
Debug (17) := Decimal point character
Debug (18, days, months) Day and Month names
Debug (19) VM2D?
Debug (20) := Disable multi-tasking
Debug (21) List I/O states
Debug (22, addr1, addr2...) Pre-initialise FSD cards
Debug (23) Break to debugger.
Debug (24) := Ctrl+C -> debugger.
Debug (25) := S/W I2CBus flag

In detail:

Debug(0 [,flags])Dump a listing of the heap(s) to the main serial port. Not likely to
be very useful to the Venom programmer.
Optional second parameter:
BIT0/1: Select which heap(s) to dump.
BIT2: List to terminal.
Returns error code or 0.

Debug(1, flags) The Venom Garbage Scanner. See below for details.

Debug(2 [,1]) List the current position in the code to the terminal, including the
chain of procedure calls. If a second parameter is supplied then
the Venom stack is dumped.

359 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If the Debug (3) flags are set then dump other information too.

Debug(3) Set and read the value of the Runtime Debug Flags as a 32-bit
binary number. The flags values are listed below.

Debug(4, addr[, n])Dump memory contents starting at addr, optionally listing n
lines of 16 bytes, in Hex and ASCII formats. List is dumped to
main serial port.

Debug(5) Keywords: list all the Venom2 keywords, class names, message
names, etc.

Debug(6)
Debug(6,1)

Return the system version number as an integer representing a
reversed date, e.g. 20100615 is the 15th June 2010.

If the optional second parameter is present with value 1 then
return the system version that the current application in flash was
compiled with. If no app in flash then returns -1.

Debug(7) Compile code from a source of text during Runtime. See below
for details.

Debug(8) Return the number of tasks running

Debug(9,n) Control the task stacks: See below.

Debug(10) Analyse the compiled code for internal inconsistencies and print a
report.

Debug(11) Tests the external SRAM by exercising the unallocated block in
the heap

Debug(13) Runtime error list: Lists all the runtime error codes and their error
text.

Debug(14) Return flags indicating the source of the last Reset.

Debug(15) Erase the on-board 8MB Flash memory - removing all Flash files
and erasing the 1MB Protected Application Area.

Debug(16) Set and read the internal flash memory write protection state. The
internal flash is where the Venom2 Language and Operating
System is stored. (it's also where your application code is stored
in VM2L).

Debug(17) Sets the decimal point character used in all printing of floating
point numbers. This defaults to '.' but may be set to any ASCII

360OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

character, e.g. Debug(17) := ','. Note that all reading
of floating point numbers still uses the '.' character.

Debug(18) Sets the strings used for days, months and ordinal suffixes when
printing DateTime and RealTimeClock objects. See here for
more information.

Debug(19) Return True (i.e. 1) if the VM2D's Display Driver IC is
detected. This may be used to distinguish between a VM2D and
a VM2-D2.

Debug(20) Disables multitasking.

Debug(20) := True

While this is set non-zero no task swaps will happen.

Debug(21) Lists the configuration state of all the VM2's I/O pins. This may
be used to check that all the VM2's ports are configured into the
states you expected. Please contact us if you require more
information.

Debug(22,a1,a2...)Pre-initialises fixed SD cards, needed if you have more than 1

a1, a2 etc are the select codes used in the Filesystem New or
Make command

(see Filesystem Creation)

Garbage Scanner

The Garbage Scanner finds memory blocks that have been lost to the system due to memory
leaks. A memory leak is where your application program loses track of an object and so can
never delete it.

During normal operation of both the Venom2 compiler and your application, memory is
requested from, and later returned to, the memory management system or 'Heap'. However, in
some circumstances memory can be lost. This kind of bug can be latent in your application, only
showing itself after the system has been running for some time, or when it does certain
operations.

The most common causes of this kind of 'memory leak' are

1. When you create a temporary object that needs memory (within a procedure, say) then
forget to remove it (explicitly with .Die, or AutoDestruct) before returning from the
procedure.

2. When you assign a new value to the only variable that refers to an object.

If you do this enough times then the system will eventually run out of memory. A memory leak,
typically, only becomes apparent when your application code stops or resets on a RAM Full

361 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

runtime error. Initially you may not know it's a runtime error as you might not be there to
observe it, so it may appear as random resetting of the controller.

We recommend that if your program is at all complicated, that you use the Garbage Scanner as
part of your code validation process. To do this, put in a call to the Garbage Scanner
somewhere in your code (in the main task only). Let your system run for some time, and
exercise as much of its functionality as you can. Then signal to your code to run the Garbage
Scanner.

Operational details

Debug(1) returns the number of leaked blocks found:

-->Print Debug(1)
 3

If you include the optional 2nd parameter with a value of 1, it will list out the details of the lost
blocks. The block listing looks like this:

-->Debug(1, 1)
Garbage block list:

 30 bytes at $200AD8: Buffer?
 262 bytes at $200AFC: <Unknown>
 46 bytes at $2020BE: Sub-class of GraphicsLCD?
Found 3 Garbage blocks

The list of garbage blocks indicates the size and address of the block, and also a good guess as
to what kind of object may have used the block.

Note: the 'Unknown' block is actually a second block used by the Buffer object that didn't
contain enough information for the garbage scanner to identify it.

There are legitimate heap blocks that sometimes get into the garbage list:

1. Entering a command at the --> prompt that contains a string constant (e.g. --
>Print "a string" , CR).

2. CTRL-C breaking out of a program while it is running - any temporary objects that were
held in local variables will show up as garbage, as even if you wrote code to destroy
them after use, this won't have been called.

3. CTRL-C breaking out of a procedure definition part way through compilation. This
leaves compiler 'garbage' in the system that is harmless but will show up in a garbage
scan.

4. Sometimes, in a multi-tasking system, an object may use some heap blocks temporarily
and then free them after a short while. You may see these blocks in the garbage list.
Only blocks that consistently appear in the garbage list need to be taken seriously.

Make sure that none of these is giving you false indications of a memory leak.

Also note that Debug(1...) will NOT respect task swap timing, so don't use it as part of a

362OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

normal application unless you take this into account.

Runtime Debug Flags

The runtime debug flags enable debug options in the runtime system. The flags are arranged as a
set of binary bits, within the value of Debug(3).

Bit
value

Operation Description

1 Stack Dump Whenever a runtime error occurs, dump the Venom stack.

2 List Error Bytecode Whenever a runtime error occurs, list the exact code address and
bytecode at that address.

4 System Stack
Dump

Whenever a runtime error occurs, dump the system stack.
Probably not useful to the Venom programmer.

8 Enable Runtime
Error: Attempt to
lock object held by
dead task.

Turn on Attempt to lock object held by dead task runtime
error. See below.

16 Heap Dump Whenever a runtime error occurs, dump the Venom Heap(s).

For example you might put the following line in your init procedure:

Debug(3) := 1+2+16 ; Dump V.stack, bytecode and heap.

Enable Attempt to lock object held by dead task runtime error

If a task holds a lock on a resource, then that resource may not be locked by any other task. If
the task ends while still holding the lock then the resource can never be unlocked from within
your program. However the operating system will detect this situation and silently unlock the
resource, though the task requesting the lock may have to wait for up to around 255 * Number
of Tasks mS before the situation is resolved.

If you suspect this is happening (unexplained short pauses in your system) then you can force the
OS to generate a runtime error instead of silently unlocking the resource, to see if that is what is
causing the pause. If the pauses are unacceptable then you will have to recode your application
so that the dead task doesn't hold any locks.

Last Reset Source

Debug(14) will return a number containing a set of binary flags indicating what event last
reset the VM2. The flags are:

363 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Binary Bit No. Bit value Reset Source

7 128 Low voltage detector

6 64 Window watchdog (not used in VM2 family)

5 32 Watchdog

4 16 Software Reset

3 8 Power on Reset

2 4 Reset pin

Runtime compiler

The runtime compiler allows you to compile code from any text stream, from within a running
application. This may be useful to temporarily change the behaviour of an application to suit
particular circumstances.

The source text can come from any object that returns characters from a Get message.
Compilation can be done from any task (though for compiling larger procedures it is
recommended that the main task be used as it has a larger stack, and it's important to make sure
that two tasks are not compiling at the same time). The syntax for compiling is currently:

 Debug(7,obj)

obj is an object containing the text for new procedures. The Debug(7...) call has to be
done once for each procedure in obj.

Notes

1. When an application is stored in flash, any newly compiled procedures will be held in
RAM. Newly compiled procedures will temporarily 'overlay' existing ones that have the
same name. At the next startup all new procedures will be deleted and the originals will
be restored from flash.

2. The maximum line length allowed in Venom is 255 characters. Lines can be broken by
using CR or any valid line termination sequence (\r, \n, \r\n). The last line should end with
CR, etc, to make sure no attempt is made to read past the end of the object's text.

3. Any syntax errors that occur in the code will be sent out of the system output stream
object (usually the main serial port) - it's best to make sure there are no syntax errors in
the code first. Any runtime errors that occur when accessing the object will result in a
runtime error report but program execution will continue.

364OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Task stack usage

Each task in Venom is given standard amounts of stack to use. However there may be some
situations where these values need to be changed.

Debug (9) allows you to monitor how much stack each task in your program has used, and then
set the amount of stack given to each task, for example if you need to save memory or provide
more stack for complex code.

Monitoring stack use

Each task has two stacks - the Venom stack and the System stack.

Debug(9,0) is an active variable that allows you to turn stack use reporting on and off.
When it is turned on CTRL-T or List Task will report the memory allocated to each stack, and
the amount used by the task up to this point.

Debug(9,0) := 1 ; turn on stack use reporting.

You should turn this feature on early in your application, make sure your code has been fully
exercised, then use CTRL-T or List Task to show you how much stack each task uses. You
may then adjust how much stack each task is allocated using the options listed below.

Set new task stack allocation

Debug(9,1) and Debug(9,2) are active variables that allow you to set the sizes of the
stacks in new ('child') tasks created from the current ('parent') task.

Debug(9,1) sets (or reads back) the Venom stack size (in bytes) for next task
started by the current task.

Debug(9,2) sets (or reads back) the System stack size (in bytes) for next task
started by the current task.

For example

Debug(9,1) := 500 ; Set new task's Venom stack size to this
Debug(9,2) := 400 ; Set new task's System stack size to this
Start my_new_task

Each task inherits the values of Debug(9,1) and Debug(9,2) from its 'parent' task.

The main task (Task ID: 0) is not created using Start, so you can't set its stack's sizes using this.
The following mechanism is used instead:

Set size of main task Venom stack (Not available in VM2L)

Debug(9,3) will set or read the size of the main task's Venom stack. This should only be
called from the main task, and it should be called before any other tasks have been

365 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

started (actually, before any other blocks have been allocated on the system heap) - i.e shortly
after startup. If these conditions are not met a runtime 'Resource' error is generated, and the
system will be in an unstable state and should be reset.

For example:

Debug(9,3) := 2000 ; Set main task Venom stack size

Note: don't turn on stack use reporting before setting the size of the main task Venom stack.

Note: the size of the main task System stack is fixed.

Internal Flash Write Protection State

Debug(16) Int write_protection_state

Debug(16) sets and reads the internal flash memory write protection state. The internal flash
is where the Venom2 Language and Operating System are stored. (it's also where your
application code is stored in VM2L).

Setting Debug(16) to $FFFFFFFF will write-protect the internal flash, and setting it to 0
will un-protect it.

(Actually the value you use is a bit pattern contained in a 32-bit number. Each bit corresponds to
a page in the flash).

Note that setting Debug(16)will always cause the controller to reset, as the new write
protection state is only valid after a reset.

Use with Protect(3)

In order for Protect(3) to be able to re-program the Venom2 Language and OS you have
to make sure that the internal flash is unprotected with

Debug(16) := 0

Because this resets the controller, you might want to use code like this in your init procedure so
that the controller doesn't need to reset just before calling Protect(3):

To init
...
;Make sure VM2 internal flash is not write protected:
If Debug(16)
 Debug(16) := 0 ; Clear write protection; resets controller.
...
End

Date format locale

You can change the day month and ordinal suffix strings, as printed by DateTime and
RealTimeClock, from the English defaults to any text you want.

366OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Once set, these strings will remain current until they are set again or the next time the controller
restarts. The syntax is as follows:

Debug(18,
Int short_day_strings,
Int short_month_strings,
Int long_day_strings,
Int long_month_strings,
Int ordinal_strings,
Int ordinal_indexes)

Note: All parameters are optional; though you can't miss out a parameter, you don't have
to supply all of them.

You must define some arrays to hold the new names, and then pass the addresses of their data
to Debug(18).

You can also set the ordinal strings - 1st, 2nd, etc, in English. This is done using two arrays -
an array of strings to carry each of the ordinal strings that exist in the language, and an array of
indexes to index into the strings based on the day number (starting from 0, though this value is
never used).

Note that there is a dummy string at the beginning of the month names so that month numbers
starting at 1 will index the correct name.

Note that the day of week numbers start at 0 = Sunday.

The code below will replicate the English day, month and ordinal strings. Modify this for your
own use.

To ChangeLocale
 Debug(18,
 short_day_strs.Address,
 short_month_strs.Address
 long_day_strs.Address,
 long_month_strs.Address
 ordinal_strs.Address,
 ordinal_inds.Address)
End

Array short_day_strs (String, 7)
 "Sun"
 "Mon"
 "Tue"
 "Wed"
 "Thu"
 "Fri"

367 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 "Sat"
End

Array short_month_strs (String, 13)
 "Jan"
 "Feb"
 "Mar"
 "Apr"
 "May"
 "Jun"
 "Jul"
 "Aug"
 "Sep"
 "Oct"
 "Nov"
 "Dec"
End

Array long_day_strs (String, 7)
 "Sunday"
 "Monday"
 "Tuesday"
 "Wednesday"
 "Thursday"
 "Friday"
 "Saturday"
End

Array long_month_strs (String, 13)
 "January"
 "February"
 "March"
 "April"
 "May"
 "June"
 "July"
 "August"
 "September"
 "October"
 "November"
 "December"
End

;Array to hold ordinal suffix strings so
;day numbers can print as '1st', '2nd', etc.
Array ordinal_strs(String, 4)
 "st", ; 0

368OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

 "nd", ; 1
 "rd", ; 2
 "th", ; 3
End

; This array is used to convert from the day number (1-31)
; to one of the ordinal strings defined in the array above.
Array ordinal_inds(Int 8, 32)
 3, ; 0
 0,1,2,3,3,3,3,3,3,3, ; 1-10
 3,3,3,3,3,3,3,3,3,3, ; 11-20
 0,1,2,3,3,3,3,3,3,3, ; 21-30
 0 ; 31
End

ErrorAction

ErrorAction Int

If ErrorAction is 0 then control returns to the command line prompt when a runtime error occurs.

If it is set to the value ‘1’ a runtime error will force Venom to reset the controller hardware.

Meaningful error action values may be expanded beyond 0 and 1 in future releases.

Note: The default startup procedure sets System.ErrorAction depending on the state of the
program mode switch, to give the runtime error behaviour most commonly required. You can
override this safe, default behaviour by setting System.ErrorAction in your code if you need
to.

 If the default ErrorAction behaviour is changed, your application may not reset on runtime
errors when it is in the field.

369 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Free

Free Int

Returns the total amount of free RAM in the controller (in the main heap).

Using a parameter, it will also report on other aspects of the heap:

Free(Int n) Int

Free (0) Heap memory free, total

Free (1) Largest free block in the heap

Free (2) The size of the 'unallocated block' of free
memory at the top of the heap.

Free (3) Total size of the main heap

Key

Key(Int which) Int

which has the value 0, 1 or 2 and selects which of three system ID numbers to return

The VM2's CPU has a unique factory-programmed system ID, which is different for each unit
manufactured and cannot be changed. It consists of 96 bits of information which can be
accessed as 3 x 32 bit integers using this system message.

The meaning of the bits is not specified, but empirically it seems that Key(2) contains a serial
number which varies from unit to unit.

The serial number information may be useful as a basis for generating codes like encryption keys,
or for positively identifying VM2 units in a network.

Low

Low

This message will look for all the VM2 I/O channels that have not been expliclitly set to an I/O
state and set them to 'input pulled low'.

370OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

This helps to reduce the current consumption in critical applications, especially when using STOP
mode.

It is typically used at the end of an Init procedure - after all the main I/O objects have been
defined.

Example

To init
 Make s2 SerialPort(9600,2)
 Make relay Digital($10,1)
 ...
 system.Low ; Pull everything else low.
End

Inputs that have already been set to float

Low will not set any I/O channels that have been explicitly or implicitly (by creating an I/O
object) set to 'floating'.

You will have to deal with these explicitly. For a list of the I/O states of each channel you can
type Debug(21) at the command line. Any channels that are in the Floating Input state can be
set to any state you wish using something like:

New Digital(channel_number, %10) ; Pull an input low
Doing this will not affect the logical operation of the I/O object.

(Note that Debug(21) may list I/O channels that are used internally to the VM2 - any of
these that are floating will not need to be set explicitly).

Output

Output Any

Output(Int n) Any

Redirecting text

System.Output(n) hold the various output streams associated with the OperatingSystem
object. Changing their values allows these text streams to be redirected.

Output Text redirected Default output stream

371 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

System.Output Text from Print, List and HELP serial

System.Output(0) Same as above serial

System.Output(1) Runtime Error reports system

Redirecting normal text

Setting Output(0) redirects the text from Print, List and HELP:

System.Output(0) := new_output_device

If you redirect the output to Nil then the output is simply discarded:

System.Output(0) := Nil

Redirecting runtime error text

Setting Output(1) redirects the text from runtime error reports, for example to an error logging
file. It is usual to use the ‘maximum size’ feature of error logging files to prevent them becoming
to large.

System.Output(1) := err_file

When redirecting error output try to use an object that is not used by other parts of the system: if
the object you are redirecting text to is locked by another task then the text output will stall
waiting for the object to become unlocked. This could prevent you from seeing error reports or
from using control-C to break out of a program.

To get around this problem in normal use, error text is directed by default to the system object,
which simply sends it directly out of the main serial port without respecting the serial object’s
locks.

It is possible to redirect any print to the system object but this is not normally
recommended, as applications normally require locking to be respected.

Reading

Reading Output returns the value of the output stream object.

Protect

Protect (Int code) Int

Protect sets protection from accidental loss of your finished Venom application, turning the
'software' you have developed in RAM into 'firmware' in the Flash memory.

Protect also allows you to create a distributable firmware file and to use this to update other

372OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

VM2s.

When you download code into a VM2 it is compiled and the held in the battery-backed RAM.
This gives a very fast compile-execute code development cycle because there is no need to
erase and reprogram a Flash memory. However, it is not safe to send your VM2 out into the
field with its application code held in RAM. You should protect it in the Protected Application
Area, located in non-volatile Flash memory.

Protect is allowable shorthand for System.Protect.

Protect may also be used to

Erase an application from the Protected Application Area

Create a firmware file for production or distribution

Reprogram a VM2 using a firmware file

The table details the functions of the Protect message:

Protect (0) Erases the Protected Application Area

Protect (1, [flags]) Copies the application from RAM into the Protected
Application Area. The optional flags parameter allows
you to set security levels - see below.

Protect (2, appfn, osfn)Creates binary distribution files (.vex and/or .vos). No
longer recommended. See Protect(4).

Protect (3) Looks for a firmware update file (extension .vfu) in the
root directory of the Flash Filing System and uses it to
update the VM2's firmware.

(The older .vex and .vos file format are still supported.)

Protect (4, filename, text)Creates a distributable firmware file. This file is a
combination of your application code and the Venom
system that will run it, ensuring that the two are always
matched.

See below for how to use Protect(4).

It is normal to use Protect with parameters 0, 1 and 4 at the command line, rather than as
part of a program, whereas Protect(3) is normally used as part of an application program.

Protect(1) flags

Venom applications in Flash are quite secure from reverse enginering: Venom is compiled down
to bytecodes, so your source code can never be read back out of a VM2. However, some

373 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

users may want to secure their application code and flash files even further. Protect(1) has
an optional flags parameter that allows you to set different levels of protection over your
application. This table sets out the meanings of the binary bits in flags.

Binary flag value When set

1 No command line. There is no way to gain access to a Venom
command line, even in Program Mode. The only option is to erase
the application. Note: you will need to ensure your application
code never terminates.

2 No automatic USB access to the Flash File System at startup in
Program Mode. This means no one can see or alter the files in the
Flash Filing system.

Example

Protect(1,3) ; No command line, no USB access.

Create binary executable files for production and distribution

Not possible in VM2L

Protect (4, String filename, String text, [int c_addr, int c_size])

Parameters:

4: Specifies firmware update file production.

filename: the name of the firmware update file to be produced.

text: some text you can embed in the file.

Optional:

c_addr: the address of any auxiliary C code you want to include in the firmware.

c_size: the size of any auxiliary C code you want to include in the firmware.

Protect(4) creates a binary file that combines your Venom application and the Venom
RTOS that runs it. These files normally have the extension .vfu (Venom Firmware Update).

A vfu file can be loaded into another VM2 to 'clone' your firmware. This is useful during
production, and it is also useful for distributing new versions of your firmware to your customers.
Note that Venom source code is not included in a vfu file.

This is the suggested sequence of operations to use Protect(4):

1. If necessary, clear the Protected Application Area using Protect(0).

2. Download your application code into RAM in the usual way

3. (Optionally use Protect(1, flags) if you want to set the security flags).

374OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

4. Type Protect(4, "myapp.xxx", "a description"); you specify a
filename, including a dummy extension, for the new distribution file, and you have the
option of embedding some text into the file that may be used to indicate what it contains.

5. The file will be created with the name you supplied in the root directory of the VM2's
Flash Filing System.

6. Note how we are using use a dummy filename extension at this stage, so we can't
accidentally use the file to reprogram this VM2.

7. The optional text might be used to record the application name and version number. You
can later read this text, from the VM2, or by opening the file in a text editor, but you
can't change it as the file is validated using a CRC.

8. Connect the VM2 to a PC using a USB connection and copy the new file to your PC.

9. On your PC, rename the file with the correct extension: .vfu

10. This file is the distribution firmware for that version of your application - keep it in a safe
place.

11. Remember to keep you application source code safe too.

Example

Protect(4,"my_app.xxx", "Heating application v20120524")

See below for how to use the .vfu file you have created.

Updating your firmware

Not possible in VM2L

There are several ways to update a VM2's firmware.

Production Programming

The first way is to load a firmware update file (*.vfu) into the Flash Filing System of a VM2
(using a USB connection) then reset the VM2 in Program Mode. This is useful for when you
have the VM2 to be updated sitting in front of you. See here for more details.

Under program control

The second way is to transfer the firmware update file into a VM2 (using USB, FTP, Serial File
Transfer, SD Card or other means) and then have the VM2 application code call Protect
(3). You must ensure that the transferred file is contiguous, and you may need to ensure that
the internal flash memory is not write-protected. After calling Protect(3) the controller will
reprogram itself and then restart running the new application and operating system. Please see
the code snippet Remote Firmware Update on our website for an example of how to do this.

Both of the above methods interrogate the Flash Filing System to see if it has a file with
extension vfu (or vex/vos) in the root directory, and then uses the first one that it finds. The file is

https://venomcontrolsystems.co.uk/code-snippets/

375 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

deleted if it is used.

 Bug alert: You must make sure that there are no other tasks running when you call
Protect(3). This is because when the Application Area is erased the other tasks will have
their code deleted, causing them to crash. One way to ensure this is to call Protect(3) from
the main task, having stopped other tasks with Stop All. It may also work to call
Protect(3) from any task, but first turn off multi-tasking using Debug. Note that you will
not see this kind of bug until the code is run from Flash.

Caution

Note: if the VM2 is either reset or powered down while it is updating it may lose either the
application code, the operating system code, or both. If this happens the only way to recover is
to download a new application or operating system using VenomIDE or similar. This cannot be
done remotely.

There is 1M Byte of application area available in the VM2 and VM2D, and 64K Bytes in
the VM2L. Venom2 is very efficient with application memory, so 1MB should be enough
for very large applications.

ROMing, Copy

Reset

Reset

Resets the controller. If it is in run mode then the application will run, else you will get the startup
banner.

The RESET\ signal on the VM2 controller will be pulled low for around 28uS.

Reset is allowable shorthand for System.Reset.

Run

Run

Resets the controller, and then runs the application as if in Run Mode, even if the Program Mode
switch is on.

Run is allowable shorthand for System.Run.

376OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

Note that some of your external circuits may not be connected to the RESET\ signal, but
other circuits may only be reset by the removal of the power supply.

RunMode

RunMode Int
RunMode(1) Int

When no parameters are supplied, RunMode returns True if the system is in Run Mode, or
False if the system is in Program Mode.

IF system.RunMode ; Are we in Run mode?
[
]

Read state of Prog Mode switch

If a non-zero parameter is supplied then RunMode returns True if the Prog Mode switch is
off, and False otherwise.

There is a difference because the system is in Run Mode when the user sends Run, even
though the Prog Mode switch may be on.

IF system.RunMode(1) ; Read the actual state of the switch...
[
]

Speed

Speed Int

The Speed message controls the master core clock speed on the VM2.

You can set the speed in increments of 8MHz from 16 to 72MHz.

The VM2 will always startup with Speed set to 72MHz.

If you lower the clock speed then both the processing speed and the power consumption of the
controller will be lower roughly in proportion. However both of these effects are non-linear.
You will get more processing power than expected as you go below 48 and 24MHz because
fewer wait states are used in accessing the flash memory. Also you may get less saving in power
than expected because of leakage currents.

Example

Speed := 16

377 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Permanently low speed systems

If you want your VM2 to always run at a low speed it may be simplest to put the speed change
very early in your application code, before any other objects are created. I.e. in the startup
procedure. If so you should List startup, copy it into your source file, and modify it like
this:

To startup
 Make system OperatingSystem
 System.ErrorAction := New Digital($20).Asserted + 1
 System.Speed := 16
 Make serial SerialPort(115200,1,1)
 Make net I2Cbus
 Make led OnBoardLED
 Make clock RealTimeClock
 If Runmode
 [led.Flash($80)
 init
 main
 led.Flash(0)
]
End

The VM2 will always start up at 72MHz, but will slow down when it gets to the Speed
command and run the rest of the application at the new speed.

Dynamic speed control

However, if you want to change speed dynamically you can do this, but you will have to reset
the speeds of some objects, like serial ports or I2CBusses, as their speeds will have been
defined relative to the original clock speed. The procedure below shows how this can be done:

To change_speed(sp)
 Local temp := serial.Speed ; Record the original serial speed.
 System.Speed := sp ; Set the master clock speed.
 serial.Speed := temp ; Now reset the serial speed.

 net.Reset ; Reset the I2C Bus to take account of new system speed.
End

Note that system commands and objects that depend on Venom2's internal millisecond timing,
like Wait, Every Timer and Stopwatch, don't need to be adjusted - they take account of the new
clock speed automatically. The RealTimeClock is not affected as it has its own independent
clock source.

378OperatingSystem

Copyright © 2009-2021 Venom Control Systems Ltd

 See Speed message in the index to find objects whose speed may need to be adjusted.

 Note that the USB Device port will only operate if Speed is set to 72 or 48 MHz. The
USB Host port (included on some Application Boards) has it's own clock and so is not affected.

Time

time Int
time(Int type) Int

Returns the value of one of two 32 bit counters that are incremented at regular intervals

Type = 0
(default)

Return microsecond counter value

Type = 1 Return millisecond counter value

These values can be viewed as 32 bit counters, both initialised to 0 then the VM2 starts, one
incremented every microsecond and the other incremented every millisecond.

Both can be used for simple timing measurements by subtracting a stored earlier value from a
later value. Even if the timer wraps round between readings, the subtracted value will be valid as
long as there was only 1 wrap round event and the difference is positive, corresponding to a
maximum measured time interval of about 35 minutes for the microsecond timer and about 24
days for the millisecond timer.

System.Time(0) is the only way to measure microsecond times, and System.Time(1) is
similar to the use of a Stopwatch object.

Using System.Time(0) to time external events like keystrokes or network response times
might be a useful way of generating unpredictable values e.g. to seed a random number
generator or create an encryption key.

Example

; measure a floating point division time in microseconds
To Test
 Local a, b, t, x
 a := 100.0
 b := 12.0
 t := System.time
 x := a / b
 t := System.time - t
 Printf("Operation took %u microseconds\n", t)

379 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

End

Note that there are overheads - in the time reading process, and in loading a and b and storing in
x. You can attempt to separate some of these overheads from the division operation by using the
line

x := a
instead, and running the test again.

Valid

Valid int

Returned value is true (1) if the operating system's computed checksum (see Checksum
message) matches the value stored in the ROM when it was created.

System.Valid is False (0) if the checksum does not match, indicating the possibility of
ROM corruption if the OS is a released version of Venom in which the internal checksum has
been set properly by us.

PRINT

Print <OperatingSystem>

Printing the system object gives the size of the symbol table and global area, and the amount of
the heap memory free. Other general system information may be added from time to time.

-->Print system
Symbol table 55 bytes
8 Global variables
99814 Heap bytes free (biggest block 99700)
NV RAM area 0 bytes (0 unused)
-->

PIDController

The PIDController object performs the functions of a classic PID controller. A PID control
system is a form of feedback loop for controlling continuous processes.

A PID controller reads the current state of a 'set point' and a 'process variable' (such as a
desired temperature and an actual temperature) and manipulates the process it controls to try to
bring the process variable equal to the set point. It does this by applying negative feedback of
three different kinds: Proportional, Integral and Differential.

380PIDController

Copyright © 2009-2021 Venom Control Systems Ltd

1. Proportional control is feedback that is proportional to the current error (the difference
between the set point and the process variable).

2. Integral control is feedback proportional to the sum of all previous errors. This
removes offset errors, which proportional control typically can't do.

3. Differential control is feedback proportional to the rate of change of the error. This is
not often used, but where it is used it may be seen as having a 'damping' effect.

Proportional control may be seen as correcting for errors in the present; integral control may be
seen as correcting for errors in the past, and differential control may be seen as correcting for
errors in the future.

The PID controller implemented by this object is arranged in the form

 Vm = G * (err + Σerr/Tint + ∆ err/∆ T * Tdiff)

Where Vm is the 'manipulated variable' (the output of the PID controller, or the input to the
system to be controlled); G is the overall gain of the feedback loop, err is the difference between
the set point and the process variable, and Tint and Tdiff are the time constants for the integral
and differential actions within the PID controller.

This form of the the PID loop allows the integral and differential coefficients to be expressed in
terms of time: the time over which past errors are corrected for, and the time over which future
errors are anticipated.

Additions to the classic PID

This implementation of the PID controller has the following additions:

1. Anti-windup

If the output of the PID controller (or, actually, the input to the process) saturates then the
integral term can accumulate without limit to values that don't reflect physical reality. This is
called 'integral wind-up', and should be avoided. The PIDController object has anti-wind-up
action in the form of output saturation limits, which limit the PID's output value, and beyond
which the integrator doesn't accumulate. Optionally, while the output is saturated at Min or
Max, the integral term will decay towards the saturation limit.

This anti-wind-up action can't compensate for wind-up due to the process input saturating, so
you should take care that the PIDController's saturation limits are set inside the saturation limits
of the process input.

2. Digital filter

To avoid the differential term generating excessive spikes in the output, the input to the
differential term may be digitally filtered with an exponential decay response.

381 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Live control

All of the external parameters, and some of the internal state of the PID controller may be
altered live, while the object is running. See Value and Reset and Debug.

Summary of messages

Make

Debug

Reset

Value

Update

Creation

Make <object> PIDController (Float Gain, Float Min,
Float Max, [Float Tint, [Float Taw, [Float Tdiff,
[Float Tfilt]]])

Parameters

Gain: This is the overall gain of the controller feedback loop

Min, Max: The saturation limits; the output value (as returned by Update) is kept within Min
and Max.

Tint: this is the Integral Time.

Taw: this is the 'anti-windup' relaxation time: while the output is saturated at Min or Max, then
the integral term decays towards the saturation limit with a time constant of Taw.

Tdiff: this is the differential term time constant.

Tfilt: this is the digital filter time constant.

Example code

This code illustrates using the PIDController; some parts of the code are not shown:

; PID Parameters: Gain Min Max Ti Taw [Td, Tf not set]
MAKE PIDC PIDController(20.0, 0.0, 100.0, 75.0, 10.0)

To PidLoop
 SetPoint := 50.0
 EVERY 100
 [
 OvenTemperature:= ReadThermometer
 ; Calcluate the PID output:

382PIDController

Copyright © 2009-2021 Venom Control Systems Ltd

 HeaterPower := PIDC.Update(SetPoint, OvenTemperature)
]
End

Suggested values

Gain: There is no suggested value for this as it is very dependent on the system you are
controlling.

The value of the output due to the gain is this: output = error * gain.

Min, Max: These should definitely be set to the values of the output that are meaningful. E.g. if
a heater is controlled using a value ranging from 0-100 then min should be 0 and max should be
100.

Setting Max and Min wider than this will result in no control over windup.

Tint is likely to need to be much greater than 1.0.

You can think of it as the time constant, in units of your control loop time, over which the integral
term tries to correct offset errors.

Taw is usually 1.0 < Taw < Tint.

You can think of it as the time constant, in units of your control loop time, over which the anti-
windup action reduces windup in the integral term if the output of the PID controller saturates at
Min or Max.

If you set it too short, any small saturation of the output will wipe out the integral term, which will
then need to be built up again.

If you set it too long, any integral windup that occurs will not be corrected quickly.

Tdiff: no suggested value at this time.

You can think of it as the time constant, in units of your control loop time, of the damping is
applied to the control output, to correct for overshooting the set point at high values of Gain.

Turning off I, D and other terms

If any of Tint, Taw, or Tfilt are less than 1.0 then their associated action is turned off.

If Tdiff is 0.0 then differential action is turned off.

383 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Debug

Debug(Int index) Float

The Debug message allows you to probe some of the working values inside the PIDController
object.

Index Internal value returned

0 Output before Min/Max limits applied

1 Proportional term (or the 'error' term)

2 Integral term

3 Differential term

4 Digital filter output value

Reset

Reset[(Float integral_term)]

Reset allow you to force the PIDController to behave as if it had just been created. Specifically,
it sets the internal value of the 'integral term' to 0.0, or to any value you supply in the optional
parameter, and it sets a flag so that the differential term and digital filter don't see any
discontinuity in the process variable value.

Value

Value(Int index) Float

The Value active variable allows read/write access to any of the external parameters of the
PIDController object. These are the same parameters that are passed when the object is
created, numbered from 0.

Update

Update(Float set_point, Float process_variable) Float

Update calculates the next iteration in the PID control algorithm and returns a new value for the
'manipulated variable'. This is the value that should be applied to the control system to attempt

384PIDController

Copyright © 2009-2021 Venom Control Systems Ltd

to move the process variable towards the set point. For example in an oven control system, it
might be the heater voltage. In this case the set point would be the desired temperature, and the
process variable would be the measured temperature.

Note that Update returns a floating point value - and that many (all?) outputs likely to be
controlled by the PIDController will take an integer value to control them (e.g. a DAC or
PWM).

So the float value must be converted to an integer using As Int.

Parameters

setpoint: this is the target value for the control system to maintain.

process_variable: this is the actual (usually measured) value of the system.

Avoiding discontinuities

The first time Update is called after the object is created, or after the object is Reset, the
differential calculation and the digital filter are initialised with 'T-1' or 'previous' values equal to
the value of the current process variable.

 Update typically takes around 20uS to calculate.

POP3Mailbox

POP (Post Office Protocol) version 3 is a protocol for fetching mail from an external mailbox. It
is a popular mechanism for users on the end of a dialup link to collect mail from a mailbox on
their ISP's server.

A POP3 object is a holder for a mailbox list. When opened it accesses a list of incoming
messages corresponding to the mailbox on the ISP's server. The messages are referenced by
number, and the POP3 object allows the program to retrieve headers and/or message body for
local processing and to delete messages from the remote mailbox.

A POP3 client must log in to a POP3 server, supplying a user name and password, in order to
prove that it is entitled to read and delete messages belonging to that user.

See also TCP/IP Networking.

Summary of messages

385 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Close

Count

Element

Length

Open

Print

Remove

Creation

Make <object> POP3Mailbox (Str server)

server is a string or text buffer containing the domain name of the mail server that will be
used. Typically this information is supplied by an ISP when the account is opened. A typical
value might be "pop3.ukfsn.org".

This creates a mailbox object. Its initial state is empty and closed.

Close

Close

Close a mailbox. The TCP connection to the server is closed, and afterwards no access is
possible to the mailbox contents. A side-effect is the physical deletion of any messages on the
server that were previously marked for deletion with the Remove message.

Count

Count Int

If the mailbox is open, returns the number of incoming messages listed

Element

Element(Int msgno, Str tag) String

msgno is the message number.

tag is a string or text buffer to match the name or first part of the name of a header
element.

A header element is one of a sequence of lines of text which precede the message and contain
control information. Common examples are:

386POP3Mailbox

Copyright © 2009-2021 Venom Control Systems Ltd

From: shows the email address from which the message was sent

To: shows the email address of the intended recipient of the message

Subject: What the message is about

Reply-to: Who to reply to, if not same as From:

The header element name is terminated with a colon. The tag parameter to the Element message
must match the first part of the tag. The matching is not case sensitive. E.g. "Date" and "date: "
will both match "Date: "

The value returned is the address of a fixed string which is valid as long as the POP3 object is
open. The string contents are the header line starting from the first non-blank character after the
colon.

Example

-->print pop3.element(3, "from"), CR
sales@venomcontrolsystems.co.uk
-->

Length

Length(Int msgno) Int

msgno is the message number assigned by the server.

This message returns the number of characters in an email message, including the headers.

Open

Open(Str username, Str password) Int

username defines the user whose mailbox is to be opened.
password must be the correct password for that user.
Each parameter can be a string or text buffer.

This message makes a TCP connection to the mail (POP3) server specified when the POP3
object was created. The value returned is:

0 or positive number: the number of messages in the mailbox

-1 : unable to make a TCP connection

-2 : POP3 authentication failed

-3 : some other error or timeout during the exchange of messages after logging in

387 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Remove

Remove(msgno)

Marks the specified message for deletion. Runtime error if out of range. Note that after marking
a message for deletion all the messages are still in the mailbox and have the same numbers.
Actual deletion occurs when the mailbox is closed.

PRINT

Print <POP3Mailbox>

Prints a list of message numbers and the size of each message

Print <POP3Mailbox>:msgno[:maxlines[:maxchars]]

Prints the message contents or the message headers, controlled by colon parameters.

msgno Message number, starting at 1 for the first in the mailbox.

Runtime error if out of range.

maxlines 0 : print the message headers instead of the body.

Non-zero: print the message body up to the maximum number of lines specified.

Default: 100

maxchars The maximum number of characters to print from the message body. It will
override the maxlines setting if this limit is reached first.

Default: 5000

PrintJob

PrintJob objects are created by the system and the only context you will ever see them is if you
define an AcceptPrintJob method within a Class you have created.

Most of the time you you will not need to send any messages to a PrintJob object - you'll only
need to pass it on to another object as a parameter to an AcceptPrintJob message.

Summary of Messages

Get

Queue

Status

388PrintJob

Copyright © 2009-2021 Venom Control Systems Ltd

Get

Get Int

Get will fetch a character from the PrintJob and return it as an integer.

If there are no characters left in the PrintJob then Get will return -1.

See also Queue

Escape sequences in PrintJobs

Some Print keywords including Font, GotoXY, Left, Right, Centre, Htab and
Vtab are encoded as escape character sequences within the print job. These sequences begin
with the ESC character (ASCII 27) and are followed by up to 5 further characters:

Print keyword Sequence of characters

GotoXY 27, 'G', XL, XH, YL, YH

Font 27, 'F', (FN + 1)

Embedded Bitmap 27, 'S', BMN

Left justification 27, 'L'

Right justification 27, 'R'

Centre justification 27, 'C'

Htab 27, 'H', PL, PH

Vtab 27, 'V', PL, PH

Queue

Queue Int

Queue returns the number of characters remaining in the PrintJob.

See also Get

Status

Status Int

When a large amount of text is printed to an object then the text will be split up into multiple print
jobs.

It is useful to know if the print job is the first, last or intermediate part of the total text being sent.

389 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Status will return an integer with bits set according to the table:

Bit Value Meaning

Bit 0 1 First print job in a Print To statement

Bit 1 2 Last print job in a Print To statement

Examples

If the text is contained in a single print job, then the Status value for this job will be 3.

If the text is split up among two print jobs, the Status values for these two jobs will be 1
& 2.

If the text is split up among four print jobs, the Status values for these will be 1, 0, 0, 2.

So an AcceptPrintJob method might look like this:

To AcceptPrintJob(pj)
 If pj.Status And 1 ; First PJ?
 name.Empty
 name.AcceptPrintJob(pj)
End

PulseCounter

PulseCounter is used to count pulses using the STM32F103's internal timer hardware. It
actually counts 'edges' - that is when the input signal changes from one state to the other. The
pulse counter object can be set up to count positive-going, negative-going edges. It keeps track
of the count as a 32-bit number.

Options available

The input may be pulled (up or down) or floating and hardware digital filtering may be applied to
the input signal.

Summary of messages

Make

Count

Reset

Print

390PulseCounter

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Make <object> PulseCounter (Int chan, Int attributes [,
Int filter])

A new PulseCounter object is created with a zero pulse count.

chan is the VM2 channel to use - it must be one of: $10, $16, $18, $26, $36.

attributes sets up the pulse measuring input. It has the following commonly used values:

attributes Description

0 or %0x Count on Falling edge

2 or %1x Count on Rising edge

(x = don't care)

In more detail, the binary bits in the attributes parameter have these significances:

Bit 2 Bit 1 Bit 0

When 1 Floating input Count on Rising edge -

When 0 Input pulled to inactive state Count on Falling edge -

 These are exactly the same input attributes as used for Digital.

The optional filter parameter may be used to set up digital filtering of the input signal.
Read more...

Examples

Make p_in1 PulseCounter ($18,2) ;channel $18, Rising edge.
Make p_in2 PulseCounter ($18,0) ;channel $18, Falling edge.

The maximum number of PulseCounter objects is 5

See also PulseWidthOut, and Shaft.

Each PulseCounter object takes around 40 bytes.

391 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Count

Count Int

Returns the current pulse count.

-->Print p . Count
 3245-->

The PulseCounter object can keep track of over 2 billion pulses - i.e. it uses a 32-bit

count register. When the count exceeds 231-1, then the value wraps round to -231.

See also Reset.

Reset

Reset

Resets the pulse count to zero. For example:

-->Print p . Count,CR
 3245
-->p . Reset
-->Print p . Count,CR
 0
-->

See also Count

Printing

Print <PulseCounter>

Prints the object’s type and current pulse count in square brackets:

-->Print p
[PulseCounter: 10]

PulseWidthIn

PulseWidthIn is used to measure the width or period of incoming pulses using the STM32F103's
internal timer hardware. Pulses or periods from several µS to over 35 minutes can be measured
with a resolution of 1µs, or smaller.

Options available

Both rising and falling edges may be detected. The input may be pulled (up or down) or floating

392PulseWidthIn

Copyright © 2009-2021 Venom Control Systems Ltd

and hardware digital filtering may be applied to the input signal.

The resolution of pulses measured is normally 1uS, but may be set to other values. See the
Speed message.

Summary of messages

Make

Done

Go

Period

Print

Creation

Make <object> PulseWidthin (Int chan, Int attributes [,
Int filter])

A new PulseWidthIn object is created.

chan is the VM2 channel to use - it must be one of: $10, $16, $18, $26, $36.

attributes sets up the pulse measuring input. It has the following commonly used values:

attributes Description

0 or %00 Measure period: falling to falling edges

1 or %01 Measure low width: falling to rising edge

2 or %10 Measure high width: rising to falling edge

3 or %11 Measure period: rising to rising edges

In more detail, the binary bits in the attributes parameter have these significances:

Bit 2 Bit 1 Bit 0

When 1 Floating input 1st edge Rising 2nd edge Rising

When 0 Input pulled to state before 1st edge 1st edge Falling 2nd edge Falling

 These are exactly the same input attributes as used for Digital, apart from Bit 0.

The optional filter parameter may be used to set up digital filtering of the input signal.
See below

393 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Examples

Make pw1 PulseWidthIn ($36, %10) ;VM2 channel $36, High pulse width
Make pw2 PulseWidthIn ($18, %11) ;Chan $18, Period between falling edges

The maximum number of PulseWidthin objects is 5.

Each PulseWidthIn object takes around 40 bytes.

Because this object uses interrupts as part of the measurement, if the input pulse edges
repeat too quickly then the measurement may become invalid. If you are using other
interrupt-based objects concurrently then the minimum pulse width measurable will
increase. Unfortunately it is difficult to be completely precise about the minimum
measurable in any particular circumstances.

See also Digital, PulseWidthOut, Shaft.

Digital filtering

The STM32F103 has digital filtering hardware built into its timer modules.

The filter parameter allows you to set up the digital filter on the input signal so that glitches aren't
confused with real input signals.

The digital filters work by recording the state of the input signal (high or low) for N samples, and
only detecting a change of state when the last N samples all indicate a state change.

Both the sample rate and the length of the filter are selectable from a range of values.

Feature Bits in
the
value

Description

Input filter setting Bits 3:0 This bit-field sets both the frequency and filter length used
to validate the input signal. The frequency is defined in
terms of either Ckint - the internal clock frequency of the
internal TIMER module, or Fdf - the digital filter
frequency defined below.

0000: No filter, sampling is done at Fdf.
0001: Fsample=Ckint, N=2.
0010: Fsample=Ckint, N=4.
0011: Fsample=Ckint, N=8.
0100: Fsample=Fdf/2, N=6.
0101: Fsample=Fdf/2, N=8.
0110: Fsample=Fdf/4, N=6.
0111: Fsample=Fdf/4, N=8.
1000: Fsample=Fdf/8, N=6.

394PulseWidthIn

Copyright © 2009-2021 Venom Control Systems Ltd

1001: Fsample=Fdf/8, N=8.
1010: Fsample=Fdf/16, N=5.
1011: Fsample=Fdf/16, N=6.
1100: Fsample=Fdf/16, N=8.
1101: Fsample=Fdf/32, N=5.
1110: Fsample=Fdf/32, N=6.
1111: Fsample=Fdf/32, N=8.

Digital filter frequency,
Fdf

Bits 5:4 This bit-field sets the digital filter sampling frequency, Fdf

00: Fdf = Ckint
01: Fdf = 1/2 × Ckint
10: Fdf = 1/4 × Ckint
11: Do not use this value

Notes: Ckint is the input clock frequency to the timer module used for each pulse
channel. This is usually the same as the CPU speed (normally 72MHz), unless the internal
clock tree has been altered outside the control of Venom2.

Done

Done Int

Returns True (1) when the measurement cycle is complete, i.e. both the leading and trailing
edge have been seen. Returns False (0) if this condition has not yet been met.

Go

Go

Starts a measurement cycle. The time measurement will start at the next leading edge as specified
by mode when the object was created, and the measurement is complete as soon as the correct
type of trailing edge is encountered.

Period

Period Int

Returns the measured period. The unit and resolution of pulses measured is normally 1uS, but
may be set to other values. See the Speed message.

The Period message can be used in two ways:

1. By itself, the Period message will initiate a measurement cycle and wait for the result
before returning. The current task is blocked while waiting.

395 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

2. In conjunction with the Go and Done messages, the task can loop and execute other
code while waiting. When the Done message returns true, the next Period message will
return immediately with the value just measured. If a Period message is sent any time
after a Go message and before the measurement cycle is complete, the task will wait.

Example of 1st usage

pwidth := pw.Period ; task is suspended while waiting

Example of 2nd usage

pw.Go
While pw.Done IsFalse
[; other code in loop executed while waiting
]
pwidth := pw.Period

Or, this uses less power when there is nothing particular to be done in the current task while
waiting:

pw.Go
Await pw.Done
pwidth := pw.Period

 See here for minimum period limiation. The maximum period measurable is around 2 billion
units - which is around 35 minutes if the units are 1uS.

Speed

Speed Int

This allows you to set the clock 'prescaler' for the timer module which implements the
PulseWidthIn object.

The clock prescaler divides the system clock (normally 72 MHz) by an integer value before
passing it on to the timer module.

Thus when Speed is set to 72 (the default value), the timer is clocked at 1MHz, and so the
resolution of the PulseWidthIn is 1uS.

Speed may be set in the range 1 - 65356, though numbers much higher than 72 are unlikely
to be useful. Speed does not change the limitation due to speed of interrupts.

396PulseWidthIn

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT

Print <PulseWidthIn>

Prints, inside square brackets, the text “PulseWidthIn : “ followed by the last measured value,
followed by a new line.

No measurement cycle is initiated. If no measurement has been made since the object was
created the value printed is 0.

The Print message is not recommended for general programming with PulseWidthIn objects.

Example:

-->print pw
[PulseWidthIn: 456]
-->

PulseWidthOut

PulseWidthOut generates pulse trains with variable Mark/Space ratio and frequency using the
STM32F103's internal timer hardware.

Options available

A PulseWidthOut object may be set to generate a continuous signal, or a pulse train containing
an exact number of pulses.

The output may be active high or active low, and may be 'push-pull' or 'open drain'.

The resolution of pulses generated is normally 1uS, but may be set to other values. See the
Speed message.

Some channels support a dual output, where there are two waveforms on different channels that
have the same period, but different widths. This gives up to eight pulse outputs in total on a
VM2.

Summary of messages

397 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Asserted

Count

Off

On, Go

Period

Queue

Speed

Width

Print

Die

Creation

Make <object> PulseWidthOut (Int channel, Int period,
Int width, Int attributes [, Int count [, Int
attributes2]])

A new PulseWidthOut Object is created. Note that the pulse train will not actually start until the
Go or On message is sent.

The table below describes each of the parameters.

Parameter Range of values Purpose

channel $10, $16, $18, $26,
$36

The VM2 Channel to use for the pulse output

period 2 to 65,536 The period of the output signal (in uS unless
Speed is changed)

width 0 to 65,536 The width of the output signal (in uS unless
Speed is changed).

If width is 0 then the signal goes to the OFF
state; if width >= period then the signal goes
to the ON state.

attributes Simple options:

'Off' is Low, Pulse
High: 3

'Off' is High, Pulse
Low: 1

These are exactly the same output attributes
as used for Digital, apart from Bit 0, which is
'don't care', but set to 1 here for consistency.
This includes the output edge 'speed'
attributes.

count 0 – 2,147,483,647 Optional: The number of pulses to generate.
If this parameter is not present, or has a value

398PulseWidthOut

Copyright © 2009-2021 Venom Control Systems Ltd

of 0 then the signal is continuous.

attributes2 Simple options:

'Off' is Low, Pulse
High: 3

'Off' is High, Pulse
Low: 1

Optional: Dual outputs are possible on
these channel pairs:

 ($10, $11); ($16, $17) and ($36, $37). To
specify a dual output, set channel to the first
channel in the pair, and set the attributes2
parameter for the attributes of the second
channel (it must be non-zero). See Width for
how to control the second channel.

Example

;Create a 1:10 mark:space PWM waveform
Make pwm pulsewidthout($18,10000,1000,1)
pwm . On ;turn it on;Create a 1:10 mark:space PWM waveform

;Create PWM outputs on two channels (same period, initially same widths too).
Make pwm pulsewidthout($18,10000,1000,1, 0, 1)
pwm . On ;turn them both on

Warning: When generating a defined-length pulse train using count, PulseWidthOut
uses interrupts to count the pulses. If the period becomes too small the VM2 may
start to behave erratically. The exact threshold for this depends on interrupt loading.
Unfortunately it is difficult to be completely precise about the minimum pulse width
attainable in any particular circumstances.

See also PulseWidthIn, PulseCounter, Shaft.

Each PulseWidthOut object takes around 40 bytes.

Asserted

Asserted Int

Setting Asserted True starts a pulse train (like On), and setting it False stops the train (like Off).
Asserted returns True if the pulse train is currently active, False otherwise.

 On, Off

399 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Count

Count Int

Count allows you to specify that the PulseWidthOut object generates a pre-determined
number of pulses in a pulse train.

Setting the Count takes effect the next time the train is triggered (using On). It has no effect on
a currently active pulse train.

Reading the Count returns the number last set during creation or using Count. Use Queue if
you want to find the number of pulses remaining to be sent.

See also Creation

Off

Off

Off turns off the pulse output immediately. It leaves the Width and Period settings untouched, so
that On will turn on the pulse output with the same pulse timings as before.

See also On/Go

On, Go

On
Go

On turns on the pulse output. The pulse output will not start until the On message has been sent.

Every time On is sent, the number of pulses in a numbered pulse train is reset to the value of
Count. If this was zero, then the pulse train keeps going indefinitely.

Go is an alias for On.

See also Off and Count

There is a bug in the Silicon of the VM2 processor IC that leads to this behaviour: if
Width >= Period, the On message will not turn the output on.

Period

Period Int

An active variable that allows the overall period of the waveform to be read or set. The unit and
resolution is normally 1uS, but may be set to other values. See the Speed message.

400PulseWidthOut

Copyright © 2009-2021 Venom Control Systems Ltd

The diagram below illustrates the relationship between period and width for an active-high
waveform.

P e r i o d

W i d t h

The minimum Period value is 2, but see the warning notice in Creation.

If Period is set to less than or equal to the current Width then the output will go to the 100%
duty state. As soon as Period is greater than Width again, pulses will reappear.

If you have Count set when Period is less than Width, (or a Width of 0) counting of pulses will
continue even if no real pulses are generated.

See also Creation, Count.

Queue

Queue Int

If the pulse train is active and count has been set, Queue returns the number of pulses still to be
generated. If the pulse train is inactive or the pulse train is continuous, or no count has been set it
returns 0.

See also Count

401 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Speed

Speed Int

This allows you to set the clock 'prescaler' for the timer module which implements the
PulseWidthOut object.

The clock prescaler divides the system clock (normally 72 MHz) by an integer value before
passing it on to the timer module.

Thus when Speed is set to 72 (the default value), the timer is clocked at 1MHz, and so the
resolution of the PulseWidthOut is 1uS.

Speed may be set in the range 1 - 65356. Speed does not change the limitation due to speed
of interrupts.

Width

Width Int

Allows the width, or 'mark' period of the waveform to be read or set. The unit and resolution is
normally 1uS, but may be set to other values. See the Speed message.

The diagram below illustrates the relationship between period and width for an active-high
waveform.

P e r i o d

W i d t h

If Width is set to zero or less, then the output will go to the 0% duty state, i.e. pulses will not be

402PulseWidthOut

Copyright © 2009-2021 Venom Control Systems Ltd

generated.

If Width is set greater than or equal to the current Period then the output will go to the 100%
duty state so the output is turned on continuously, no pulses will be generated. As soon as
Width is set less than Period, pulses will reappear.

If you have Count set when Width is zero, or Width is >= Period, the count will continue even if
you can’t see pulses.

See also Creation, Period

Dual outputs

obj . Width(Int index) Int

If the object has two outputs associated with it, each has an independent width setting. Using
Width without an index parameter will access the main output. However you can use Width with
an index to access either output. The two outputs are numbered:

0. The main output

1. The auxiliary output

Printing

Print <PulseWidthOut>

Prints the object type and current width and period within square brackets.

-->Print pwm
[PulseWidthOut: 1000/10000]

See also Period, Width

Die

Die turns off the pulse train immediately and removes the object.

RandomNumberGen

The Random number generator object uses a triple Tausworthe 32 bit generator whose results
pass many stringent tests of randomness.

The sequence length is 288.

It can be used to generate integer or floating random values.

 The integer generator takes about 12 microseconds per new value.

403 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make
Get
Print
Reset
Value

Creation

Make <object> RandomNumberGen(type, [various seeds])

type Int or Float

Seeds If no seed value is specified, an initial state for the generator is created from
system information in a way that is designed to be unrepeatable and
unpredictable.

Otherwise 1-3 integers or a string or text buffer contents define a starting pattern
which is repeatable if the same seed value is used each time.

Each random number generator object stores its own state.

Examples

Make r1 RandomNumberGen(Int)
Make r2 RandomNumberGen(Float)

Get

Get Int or Float
Get([Int min, Int max]) Int
Get([Float min, Float max]) Float

Returns a value of the type defined when the generator was created.

Integer values have a uniform distribution in the range -2147483648 to +2147483647.
Floating point values have a uniform distribution between 0.0 and +1.0

If min and max values are specified, the generator will return numbers in that range, including the
min and max values.

404RandomNumberGen

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT

The Print operator on a random number generator produces output like this:

[rand:0.652303] (float)
[rand:-1553008633] (int)

Reset

Reset
Reset(Int or Str seed)
Reset(Int seed1[, Int seed2[, Int seed3]])

If no seed value is specified, an initial state for the generator is created from system information
in a way that is designed to be unrepeatable and unpredictable.

Otherwise 1-3 integers or a string or text buffer contents define a starting pattern which is
repeatable if the same seed value is used each time.

Value

Value is a synonym for Get for all types of random number generators.

RealTimeClock

The RealTimeClock object uses the VM2's built in RTC module to keep an accurate count of
time in seconds. This number may be converted to a meaningful date by printing the clock or by
using a DateTime object.

RealTimeClock can keep track of the date and time until the year 2089, and it can be adjusted
to compensate for inaccuracies in the crystal oscillator.

When the controller is powered down the real-time clock is kept powered by the Lithium
backup battery.

Summary of messages

405 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Adjust

Element

Line

Reset

Time

Timeout

Valid

Print To

Print

Creation

Make <object> RealTimeClock

The clock object is created without affecting the time it holds internally.

If the real-time clock has not had its time set previously then this will need doing before it can be
used properly: see Time.

The clock can hold times from 1990 to 2089

Adjust

Adjust Int

Adjust allows you to correct the clock if it runs fast or slow.

The units of adjustment are approximately equal to ppm, but are actually 1 part in 2^20, or
~0.9537ppm.

The adjustment value is in the range 0-127. An adjustment value of 64 will make the clock run at
the exact speed set by the clock crystal circuit. A lower value will make the clock run faster, and
a higher value will make the clock run slower. The maximum adjustment range is about +/- 5.3
seconds per day, and the precision of adjustment is ~0.082 seconds per day.

The Adjust value is initialised to the midpoint value (~64) the first time you set Time.

 GetLast

Example code

; Apply a correction, in Seconds, to the clock's time.

406RealTimeClock

Copyright © 2009-2021 Venom Control Systems Ltd

; Correction is +ve to set the clock forward, and -ve to set it back.
; Also, adjust the clock's speed to take account of the applied correction.
To ApplyClockCorrection(correction)
 Local elapsedTime
 Local lastSet := clock.GetLast ; Read when the clock was last set.
 elapsedTime := clock.Time - lastSet
 clock.Time := clock.Time + correction ; set the clock to the new time.
 speedUpClockBy(correction/elapsedTime) ; Adjust the clock. Speed it up if we had to set it forward.
End

; Adjust the speed of the clock.
; adjustment is a float value.
; +ve values make the clock go faster.
To speedUpClockBy(adjustment)
 Local NewAdjust
 Local AdjustValue := (adjustment * (2 ^ 20)) As Int ; Convert to units used by the clock hardware.

 ; Find the new Adjust value.
 ; [Increasing the Adjust value slows the clock down,
 ; so we have to subtract from the existing value].
 NewAdjust := clock.Adjust - AdjustValue

 ; Limit the range to valid values:
 If NewAdjust > 127
 NewAdjust := 127
 Else If NewAdjust < 0
 NewAdjust := 0
 ;Set the new adjustment
 clock.Adjust := NewAdjust
End

GetLast

GetLast Int

GetLast returns the date/time (in Venom Seconds) at which the clock was last set.

407 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Element

Element(Int index) Int

<RealTimeClock>.(Int index) Int

The Element message allows access to the STM32F103's 'backup registers'. These are 42
registers, each of 16 bits, that hold their contents so long as the clock battery is present.

They may be used to hold non-volatile parameters and settings for your application.

 index can take the values in the range 1 - 42, but see the note below.

NOTE: registers 1 and 2 are used by the RealTimeClock object to hold the GetLast
value. If further registers are used by the system they will be taken from the front of the
register block.

Line

Line(Int channel) := Int edge_flags

The Line message allows you to set up one or more input channels so that they wake the VM2
when it is in Stop Mode.

Before using Line you should Make the channel into a Digital input of some kind.

Any VM2 channel may be used to wake from Stop Mode, but not all at the same time.

The limitation is given by the secondary channel number grouping: channel numbers are
expressed as two-digit hexadecimal numbers, for example $2C. The secondary grouping is
given by the second hexadecimal digit of the chanel number. Thus channel $2C is part of
secondary group C.

You may use one channel from each secondary group. I.e. none of the channels you use to
wake up can have the same second digit as any other.

This is further restricted in that the CTS input signals used by serial ports 2,3,4 & 5 use the same
mechanism as for wake up - so you should include them in your calculations of which channels
may be used.

The channels use by the SerialPort CTS inputs are given in the table

Serial Port VM2 Channel Channel group

408RealTimeClock

Copyright © 2009-2021 Venom Control Systems Ltd

No.

1 $73 None

2 $43 _3

3 $75 _5

4 $77 _7

5 $78 _8

The value edge_flags is used as a set of binary flags. Bit 0 is set if you want to detect falling
edges and bit 1 set for detecting rising edges. Set both bits for both edges.

Example

Say we are using serial ports 1, 2 & 4 with hardware handshaking. The other serial ports we
aren't using at all, or at least we not using hardware handshaking.

Thus these channels are used up:

CTS2, or channel $43

CTS4, or channel $77

This means the groups _3 and _7 are in use, leaving groups _0, _1, _2, _4, _5,
_6, _8, _9, _A, _B, _C, _D, _E & _F free to use.

So we might choose to use channels $10, $2C, $34 as groups _0, _C and _4 are
free.

Example code

Make wakeup_input1 Digital($10) ; make an input
Make wakeup_input1 Digital($2C) ; make an input
Make wakeup_input1 Digital($34) ; make an input
...
clock.Line($10) := %10 ; Wake on Rising edge
clock.Line($2C) := %01 ; Wake on Falling edge
clock.Line($34) := %11 ; Wake on Either edge
...
Forever
[
 clock.Timeout(10) ; Go into Stop Mode for ~10 Seconds.
 check_wake_lines ; code to check the inputs to see if one of them was responsible for waking.
]

409 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Reset

Reset

Reset will reset the RTC hardware module inside the VM2 microcontroller, stopping the 32768
Hz oscillator. Valid will subsequently return False.

This might be used to reduce battery drain, or to simulate the behaviour of a new system where
the clock has never been set.

Time

Time Int

Time is an active variable that holds the seconds count of the clock. This may be converted to a
date using a DateTime object, or by printing the clock. If the time has not been set since the
Lithium battery was plugged in, then the time returned will be zero.

Startup time

It can take around three seconds to first start up the clock's crystal oscillator: you may notice this
as a delay when setting Time for the first time.

If the clock crystal oscillator doesn't start up then a Device not found error is generated.

You can shut down the clock oscillator using Reset.

You can set the clock's time by writing a seconds value to it (perhaps using a DateTime object
to calculate that value), or by printing to it.

Generally the clock will keep time to a few seconds a day. If the controller is used near
the temperature extremes then this accuracy will be affected. You can calibrate the
clock using Adjust. Adjust is initialised to its mid point (64) the first time you set Time.

See also Reset, Valid

Timeout

Timeout(Int sleep_period)

The Timeout message puts the VM2 into the STM32's low power 'Stop Mode' for a period
of sleep_period Seconds.

410RealTimeClock

Copyright © 2009-2021 Venom Control Systems Ltd

During Stop Mode the VM2 takes very little power (~55uA). All internal clocks other than the
Real Time Clock are stopped, the I/O state is retained, and the contents of memory are retained.
This means the outputs remain at exactly the state they were on entry into Stop Mode; similarly
inputs remain as inputs. When Stop Mode ends the VM2 carries on from where it left off. The
internal time used by Wait, Stopwatch, Timer and other subsystems is frozen during Stop Mode.

The maximum sleep period is 15 seconds, however it is simple to program around this limit - see
the example code below.

sleep_period is in the range 2 to 15 seconds, though it is easy to extend the effective sleep
time. The upper limit is given by STM32F103 watchdog timer; the lower limit is set to
ensure the real time clock alarm is never set so early it might be missed. If you supply a
period outside these limits it will be constrained.

Minimising power consumption

It may be useful for some VM2 applications to spend much of their time in Stop Mode,
consuming little current, and waking up only when necessary.

In order to attain the minimum overall current during Stop Mode it will be necessary to do most
or all of the following things:

Turn off all circuits external to the VM2 that take significant current

Turn off all outputs on the VM2 that may be sinking or sourcing current into an external
device, including the onboard LED.

Make sure no inputs are floating. All inputs should be driven to a valid logic state - either
high or low. See system.Low.

Make sure that 'pulled' inputs are not being driven against their pull up/down resistance.

Turn off the ADC and DAC modules within the VM2 (method to be implemented later)

Wait until there is no traffic on the Serial Ports, I2C Bus, etc - else characters may be
missed or the bus held in a high current state.

Other wake mechanisms

It is possible to wake up on the change of state of one or more input channels. See Line.

Example code

To main
 Print clock,CR
 wait 5 ; to let the serial characters out before we sleep.
 sleep_until(clock.Time + 60)
 Print "We have woken up!", clock, CR

411 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

End

; (This code has a 2S resolution.)
To sleep_until(wake_time)
 Local sleep_period
 Forever
 [
 sleep_period := wake_time - clock.Time
 If (sleep_period) <= 0
 Break
 clock.TimeOut(sleep_period) ; Low power sleep 2-15 seconds.
]
End

Valid

Valid Int

Valid returns True if the clock holds a valid time - i.e. it has been set and the clock hardware
module seems to be working.

Accepting Print

The clock’s time and date can be set using Print To. E.g.:

Print To clock,"2010-06-15 10:56:00"

Printing to the clock must obey these rules:

ISO format is used: YYYY-MM-DD HH:mm:SS

You have to provide all the elementes of the date, but you can miss out the least
significant time elements, e.g. YYYY-MM-DD, or YYYY-MM-DD HH:MM

You can use any single non-numeric characters to separate the elements of the data and
time, e.g. YYYY/MM*DD HH-mm SS

For example:

Print To clock,"2010-06-15 10:56:00" ; ISO format
Print To clock,"2010 06 15 10 56 00" ; Using spaces to separate the elements.

 Note: you can also print to an object by sending it the PrintF message.

412RealTimeClock

Copyright © 2009-2021 Venom Control Systems Ltd

Printing

Print <RealTimeClock>

Printing the RealTimeClock object shows the current time and date in ISO format.

-->Print clock
2012-04-11 15:03:55

Formatting

You can also specify the format you want to use by using a format specifier string.

Print <RealTimeClock> : format_string

For example:

-->Print clock : "h:mmaa, dd MMM yyyy",cr
3:03pm, 11 Apr 2012

This uses the same system that is used for printing the DateTime object.

(The old system that uses a numeric format specifier is also still available - see Printing DateTime
)

DST, BST and Time zones

If you use a second (integer) format parameter to Print for the RealTimeClock then this
will be used to offset the printed date/time. This is useful for implementing systems that can
display daylight saving time and different time zones. Using this method the clock's time is not
changed when moving in and out of DST, but the displayed time is changed by supplying a
different offset.

This line prints the clock's time, but offset by one hour:

Print clock:"HH:mm:ss":3600 , cr

Locale

It is possible to change the day of week and month names to suit different locales. See here for
more information.

SafeData

SafeData allows easy storage of important non-volatile data - e.g. device settings and calibration
data - in an external I2C EEPROM.

 You might also want to use RealTimeClock.Element to store non-volatile data.

413 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Usage notes

Put and Get are probably the best access messages to use for most applications as these allow
the simplest interface to store and retrieve lists of values of different types and sizes. Element is
also provided for random access into the SafeData store. There is some example code here.

Summary of messages

Make

Address

Checksum

Element

Get

Put

Reset

Print

Creation

Make <object> SafeData (Int type , Int bus , Int address)

type gives the type of non-volatile storage device: see the table below.

bus gives the I2C Bus the device is attached to: either 1 or 2.

address gives the I2C Address of the device: usually 160, 162, ... and upwards.

There are two I2C EEPROM device types supported:

Type Description

1 EEPROMs compatible with the M24C02. The significant common feature is they
take one byte of address within the device (maximum storage 256 bytes).

2 EEPROMs compatible with the M24C32, M24C64, etc. The significant common
feature is they take two bytes of address within the device.

The bus and address parameters specify which I2C bus the EEPROM is on (1 or 2), and which
address it is located at on the bus (160, 162, ...). For example:

Make s SafeData (1 , 1 , 162)

414SafeData

Copyright © 2009-2021 Venom Control Systems Ltd

SafeData takes an small block from the heap to keep local information

Address

Address(Int p) Int

Address allows you to set and read the address within the storage device that the Get message
reads from and the Put message writes to. This address is auto-incremented on Put and Get.

Checksum

Checksum(Int start , Int end) Int

Checksum returns the sum of all the bytes in the storage device from start to end-1, as a 32-bit
unsigned integer. It can be useful for validating the contents of the device.

Note: you don't have to use all 32 bits of the returned value of the sum.

Example code: using user-defined class as a record

This code uses a user-defined class to hold all the settings, and uses a checksum to validate
them.

To init
 ;...
 Make eeprom SafeData(1,1,162)
 Make Settings SettingsClass
 SettingsChanged := False ; Set this flag whenever a setting has been changed by the user.
 ;...
End

To main
 LoadPersistentSettings
 ;...
End

; Load the settings from EEPROM. Reset settings if the checksum is 'bad'.
To LoadPersistentSettings
 If ReadSettings IsFalse
 ResetSettings
End

; Save the settings in the EEPROM if SettingsChanged flag is set.

415 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

; Call this at points in the code when you want the current settings to be saved.
; It only writes to the EEPROM when the settingsChanged flag has been set.
To SaveSettings
 If SettingsChanged
 WriteSettings
End

; A Class to hold persistent settings.
Class SettingsClass
 Calibration Float
 Delay Int 8
 Count Int 8
End

#define XSUM_EXTRA 42 ; Extra value added to checksum.

; Store settings in the EEPROM, and set a checksum.
To WriteSettings
 Local xsum
 eeprom.Reset
 eeprom.Put(Settings)
 ; calc and write checksum...
 xsum := eeprom.Checksum(0, eeprom.Address) + XSUM_EXTRA
 eeprom.Put(xsum, Int 16)

 SettingsChanged := False
End

; Read settings from the EEPROM and return true if checksum is good.
To ReadSettings
 Local xsum, xsum2
 eeprom.Reset
 eeprom.Get(Settings)
 xsum := eeprom.Checksum(0, eeprom.Address) + XSUM_EXTRA
 xsum2 := eeprom.Get(Int 16)

 SettingsChanged := False

 Return (xsum = xsum2) ; return true if xsums agree.
End

; Reset the settings to their default values.
To ResetSettings
 Settings.Delay := 10

416SafeData

Copyright © 2009-2021 Venom Control Systems Ltd

 Settings.Calibration := 100.0
 Settings.Count := 0

 SettingsChanged := True
End

Example: storing separate items

Here we show how to store the values of a set of variables (named a, b, c, d and e), set their
checksum, retrieve them from storage, and check their validity.

A significant simplifying feature of this code is that the values are always stored and retrieved in
the same order, so that even though they are stored using different numbers of bytes, your code
doesn't have to know the exact addresses they are stored at.

#Define XSUM_CONST 42 ; any non-zero constant value.

To init
 Make sd SafeData (1 , 1 , 162)
End

To main
 load_settings
 ... ; make some changes to the variables
 store_settings
End

To Set_default_values
 ;Some dummy data to test with:
 a := 1
 b := 2
 c := 3
 d := 4
 e := 5.12345
End

;Store the data using the SafeData object.
To store_settings
 Local posn

 sd.Address := 2 ; [First two bytes are reserved to hold size of the stored data]
 sd.Put(a)
 sd.Put(b,16)
 sd.Put(c,16)
 sd.Put(d,32)

417 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 sd.Put(e, 1.0)
 posn := sd.Address ; the next empty position.
 sd.Element(0, 16) := posn ; record (at the start) how much data we've stored.
 sd.Put(sd.Checksum(0,posn)+XSUM_CONST,16) ; Store the checksum after the data.
End

;return True if the stored data matches it's checksum.
To stored_data_ok
 Local posn := sd.Element(0,16) ; read how big our stored data is.
 Return sd.Element(posn, 16) = sd.Checksum(0,posn) + XSUM_CONST ; Checksum matches?
End

To load_settings
 If stored_data_ok IsFalse
 [
 Print "Settings lost!", BEEP, CR
 Set_default_values
 store_settings
]
 Else ; The stored data looks OK...
 [
 sd.Address := 2 ; This is where the actual data starts.
 a := sd.Get
 b := sd.Get(16)
 c := sd.Get(16)
 d := sd.Get(32)
 e := sd.Get(1.0)
]
End

A constant value, called here XSUM_CONST, is used to get round the condition that if the data
is all zeros, then the checksum will match even if all zeros is not correct data. Use any non-zero
integer value, such as ‘42’.

Storing strings

Variable-length Strings may be stored in the SafeData similarly to the variables shown above, by
writing all the characters of the string into the SafeData. You should either store the length of the
string before the data, or store a zero byte to indicate the end of the string.

418SafeData

Copyright © 2009-2021 Venom Control Systems Ltd

Element

Element(Int addr , type) Int/Float
<SafeData>.(Int addr , type) Int/Float

The element message allows 'random' read and write access to the storage device. The
parameters to Element are the byte address within the device, and an optional parameter that
tells the object what type of data is being stored.

type Data storage

None 8-bit unsigned integers

Int 8 8-bit unsigned integers

Int 16 16-bit signed integers

Int 24 24-bit signed integers

Int or Int 32 32-bit signed integers

Float Floating point numbers

The .Element message has a standard shortcut in Venom2 which is .()

For example:

s.(0, Int 8) := 24
Writes 24 to one byte at location zero.

s.(2,Float) := 231.3438
Writes a floating-point number to four bytes at location two

You should be careful to take account of the size of the data you are writing when you choose
the start address, so you don’t get overlaps or holes in the device’s memory space.

s.(0,Int 8) := 24
s.(1,Int 16) := 1232
s.(3,Int 16) := 23232
s.(5,Int) := 323323222
s.(9,Float) := 1.23232

Reading data out of the device is very similar to writing it.

Val := s.(0, Int 8)
Reads a byte out of the device from location zero.

s.(2, Float) := 231.3438
Writes a floating-point number to four bytes at location two.

There is currently no validation of data written to the storage device so you may want to
check the correct data has been written.

419 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Get

Get Int
Get(type) Int

Get reads an item of data, at the current address, from the storage device, and returns it's value.

The address is advanced by the number of bytes in the item read.

The optional proto parameter sets the kind of item to read:

type Data item read from
device

Address increment

None 8-bit unsigned integer 1

Int 8 8-bit unsigned integer 1

Int 16 16-bit unsigned integer 2

Int 24 24-bit unsigned integer 3

Int or Int 32 32-bit signed integer 4

Float Floating point number 4

A user-defined Class
object*

A record as defined by
a class definition

Length

*Note: when supplying a user-defined class object as the 'type' parameter, data is read
from the storage device into the user-defined class object. The Get message return value
is undefined.

Examples

b := s.Get ; read byte
n := s.Get(Int 16) ; read a 16-bit integer
n := s.Get(Int) ; read a 32-bit integer
f := s.Get(Float); read a floating point value
s.Get(MyClassObject) ; read data into MyClassObject

More example code is shown in Checksum.

420SafeData

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put(Int item, [type])

Put writes a data item to the storage device, at the current address. The address is advanced by
the number of bytes in the item written.

The type parameter indicates the type and size of the item to write

type Data item written to
device

Address increment

Not supplied 8-bit unsigned integer 1

Int 8 8-bit unsigned integer 1

Int 16 16-bit unsigned integer 2

Int 24 24-bit unsigned integer 3

Int or Int 32 32-bit signed integer 4

Float Floating point number 4

A user-defined Class
object*

A record as defined by
a class definition

Length

*Note: when writing a user-defined class object, only one parameter should be supplied:
the object.

There is currently no validation of data written to the storage device so you may want to
check the correct data has been written.

Examples

s.Put(2) ; Write a byte
s.Put(3.1234, Float) ; Write a float value
s.Put(1232, Int 16) ; write a 16-bit integer value.
s.Put(12388734, Int) ; write a 32-bit integer value.

More example code is shown in Checksum.

Reset

Reset

Reset resets the internal address for reading and writing to 0.

421 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT

Printing the SafeData object prints some or all of the contents of the storage device as a list of
bytes in hex format, each line up to 16 bytes long.

If you supply colon format parameters, then you can specify the amount of data printed, and the
start position of the data to print. One colon parameter specifies the amount of data to print
from the start; two colon parameters specify the start point and then the amount of data to print.

If no colon parameters are present, 256 bytes from the start of the device are printed.

Example

Print s:16:32
SafeData
$01 $02 $03 $04 $04 $04 $04 $04 $04 $04 $00 $00 $42 $C8 $76 $C9
$41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41 $41
-->

 Print formatting, in general; Print formatting for Objects.

Semaphore

The Semaphore object in Venom2 has two closely related uses.

Firstly, it is an object that may be locked - and as such may be used to control access to critical
parts of your code in a multitasking application, as described in The Venom Tutorial. This use of
the Semaphore object uses the Lock, Unlock, TestLock and Owner messages.

Secondly, it also implements the classic semaphore function, enabling more sophisticated
resource control systems to be implemented.

This functionality uses the Get and Put messages, to claim and replace resources.

The semaphore holds an internal count value, which is usually initialised when the semaphore is
created to a positive value (although a value of zero can be useful too).

The amount of a particular resource in your application can be represented by the Semaphore's
count value.

Tasks may claim integer amounts of resource using the Get(n) message, and reliquish that
resource using the Put(n) message.

Get waits, swapping tasks, until the Semaphore's count is at least n, then takes n from count
(thus n always remains zero or positive).

Put simply adds n to the count value.

422Semaphore

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make

Count

Get

Put

Lock

Owner

TestLock

Unlock

Print

Creation

Make <object> Semaphore[(Int initial_count)]

initial_count is optional - it sets the initial value for the count held by the Semaphore.

Examples

Make s Semaphore
Make s1 Semaphore(10) ; make one with an initial count of 10

Count

Count Int

Reading the value of Count returns the count value held by the Semaphore.

Count can also be set, but this should normally only be done as a 'reset' operation, not as part of
claiming and relinquishing of resources.

Get

Get Int

Get(Int n) Int

Get waits, swapping tasks, until the Semaphore's count is at least n, then removes n from the
count.

If n is not supplied then n defaults to 1.

423 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put

Put(Int n)

Put adds n to Semaphore's count.

If n is not supplied then n defaults to 1.

Lock

Lock Int

Lock(Int n) Int

Locks the Semaphore object.

This message accesses the Semaphore's standard 'Venom resource lock' properties, which are
completely unrelated to its other, classic semaphore properties.

See here for details of the locking messages.

Owner

Owner TaskObject Or Nil

Returns the owner of the Semaphore object.

This message accesses the Semaphore's standard 'Venom resource lock' properties, which are
completely unrelated to its other, classic semaphore properties.

See here for details of the locking messages.

TestLock

TestLock Int

Locks the Semaphore object, and returns the result.

This message accesses the Semaphore's standard 'Venom resource lock' properties, which are
completely unrelated to its other, classic semaphore properties.

See here for details of the locking messages.

Unlock

Unlock

Unlocks the Semaphore object.

424Semaphore

Copyright © 2009-2021 Venom Control Systems Ltd

This message accesses the Semaphore's standard 'Venom resource lock' properties, which are
completely unrelated to its other, classic semaphore properties.

See here for details of the locking messages.

PRINT

Print <Semaphore>

PRINTing the Semaphore will print something like

[Semaphore 5]
which indicates you are printing a Semaphore object that holds the value 5 in its internal count.

SerialPort

SerialPort objects provide interfaces to serial communication ports. The ports can operate at
standard rates up to 115,200 baud, or higher non-standard rates. There is configurable
handshaking available: hardware (RTS/CTS), software (XON/XOFF), or none.

Summary of Messages

Make

Die

Empty

Escape

Format

Free

Get

Handshake

Look

On

OutputBuffer

Put

Queue

Speed

Timeout

Valid

Print To

425 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Make <object> SerialPort(Int baud_rate, Int port [, Int
handshake])

When making a SerialPort object the baud rate, the port and, optionally, the handshaking are
specified.

The VM2 uses a group of four channels for each serial port: Transmit, Receive, Handshake input
and Handshake output. If hardware handshaking is not enabled then the handshake channels are
generally free to be used for other purposes. See the VM2 datasheet for more information on
these channels.

Here we create a serial communication object on port 1 talking at 115200 baud, with hardware
handshaking:

Make serial SerialPort(115200,1,1)
An object like this is created by the default startup routine.

The port values are 1 - 5.

The baud rates available lie in the range 1200 - 4,500,000 (port 1) or 600 - 2,000,000
(ports 2-5)*

Handshaking takes values of:
0 - none
1 - hardware handshaking with CTS input floating
2 - software handshaking
3 - use RTS for RS-485 half-duplex mode control)
4 - hardware handshaking with CTS pulled low)
5 - hardware handshaking with CTS pulled high)

The input and output buffers are both 256 bytes long. This is not configurable.

You may need to connect RS232, RS485 or other line transceivers to your VM2 in
order to use this object to communicate with other equipment. Some Application
boards include transceivers on one or more serial ports.

When the SerialPort is created the Rx channel is pulled High internally and any CTS
input is set to floating.

See the VM2 Datasheet for details of which ports use which VM2 channels.

*Lower speeds are possible if the system clock speed is reduced. At 16MHz system clock
speed the speed on ports 2-5 can go down to 150baud.

 Also see Handshake, Speed, Format

426SerialPort

Copyright © 2009-2021 Venom Control Systems Ltd

Die

Die

Die will reset the internal serial port peripheral so that it no longer controls or responds to it's I/O
channels, and so it draws no power.

The TX channel is set to input pulled high, to emulate an inactive transmitter. The I/O states of
other I/O channels are not changed.

If you need the channels to change to a different state then you will have to do this explicitly.

Empty

Empty

This message will empty the serial input buffer, discarding any characters in it.

Escape

Escape Int

Escape governs the Ctrl-C (break) and Ctrl-T (list tasks) functions on the main serial port (
Escape only apples to the 'main' serial port - the one used for programming - i.e.port 1). The
Escape message is ignored when sent to the other serial ports.

When the main serial port is created Escape is set to 'on' - i.e. Ctrl-C & Ctrl-T are enabled.
Note however that the startup procedure may modify serial.Escape.

Escape may be set to on or off by setting it to True or False (or, 1 or 0); similarly when
reading its state, 1 is on and 0 is off.

When escape is off, Ctrl-C & Ctrl-T are treated as normal characters.

Format

Format Int

The Format active variable allows the serial communication format to be changed. The integer
value is a set of flags coded as bits in a binary number.

Bit Value Meaning… …When 0 …When 1

0 1 Odd Parity No parity when both
these bits are 0

Odd parity

1 2 Even Parity Even parity

427 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

2 4 Data length 8 bits, or

7 bits data + 1 bit parity

9 bits, or

8 bits data + 1 bit parity

3 8 stop bits 1 stop bit 2 stop bits

The default format is ‘8-NONE-1’ which has a format value of zero.

Example

For a format of 7 data bits, even parity, one stop bit the value of the binary number is %0010,
or in decimal, 2.

serial.Format := 2 ; Set '7-EVEN-1' format.

Free

Free Int

Free returns the free space for characters in the serial input buffer.

If you want to know the Free value for the serial output buffer, see OutputBuffer

Get

Get a single character

Get Int

The Get message returns a character from the serial port, but waits if there isn't one available yet.

Note: CTRL-C characters can be trapped by the Escape function and so not seen in Get. If
these characters need to be received, Escape may be turned off with serial.Escape.

Get a line

obj . Get(String s [, Int termination])

This will get a whole line of text and put it in string s.

By default the line is terminated with CR and input is not echoed back to the serial line.

If the optional parameter termination has the value 1, the line is expected to be terminated
with CRLF or just LF (CR is ignored)

Neither CR nor LF is included in the stored string.

428SerialPort

Copyright © 2009-2021 Venom Control Systems Ltd

If the string capacity is reached, Get returns without collecting any further input.

Get an array

Obj.Get(array a [, Int start, Int size])

a An array of 8 bit integers

start(default 0) element number at which to start transferring data to array

size (default whole array) how many bytes to transfer

This gets a fixed number number of characters into an array very efficiently.

Handshake

Handshake Int

Handshake allows the handshaking function of the port to be set.

Value Handshaking

0 NONE

1 Hardware

2 Software

3 RS-485 half-duplex

4 Hardware, with CTS pulled LOW

5 Hardware, with CTS pulled HIGH

Software handshaking is performed with the XON and XOFF characters in the ASCII
character set. If enabled, these characters assume their control function and may not be sent
over the serial link.

Note that setting software handshaking will always cause the immediate sending of an XON
character. For this reason, if you want to send both Handshake and Speed messages to
configure a serial port, you should set Speed first, then Handshake.

Hardware handshaking uses ports designated as RTS and CTS for each serial channel.

429 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Automatic handshake setting during download

When code is downloaded via VenomIDE the VM2 will automatically adjust its serial
handshake setting to match VenomIDE.

This allows you to set serial handshaking to whatever setting your application requires (e.g. to
None for serial debug output), without having to reset it every time you download new code.

See also: Timeout.

The handshaking 'high and low water marks' inside the input buffer are set at 40
characters away from the buffer limits i.e. at 40 and 215 characters. Thus handshake
output is asserted 'off', or XOFF is sent, when there are more than 215 characters in
the input buffer, and these signals are turned on again when there are fewer than 40
characters.

On the other side of the serial ports, when handshake input is asserted off, or XOFF is
seen coming in, then any character currently being transmitted is completed and no more
are sent after that.

Pulling CTS High or Low

Modes 4 and 5 only apply when the serial port is connected at logic levels to a device, i.e.
without RS-232 level shifters in between. They define the behaviour of the transmit flow control
when the device is physically disconnected.

4 (pull CTS LOW) means data can be transmitted (and will be lost) while disconnected.

5 (pull CTS HIGH) means data will not be transmitted while disconnected.

RS-485 Half-Duplex Mode

The SerialPort object can drive a half-duplex RS-485 interface, i.e. one that uses a bidirectional
transceiver which is switched between transmit and receive mode. This function is enabled by
setting the Handshake value to 3, either using the Handshake message, or at Make.

The SerialPort object uses its RTS signal for automatic control of the transceiver mode. See the
circuit schematic for Application Board 3 (5922) for one way to do this.

Sending an On message to the SerialPort sets the transceiver to transmit mode. You should then
send your data packet, using Print or Put, etc.

When a stream of data has been transmitted and the port becomes idle, the direction control is
immediately set to receive mode.

Another On message is required before transmitting again.

Example

To init

430SerialPort

Copyright © 2009-2021 Venom Control Systems Ltd

 Make RS485 SerialPort(115200, 4, 3)
End

To SendPacket(packet)
 Task.Off ; Turn of multitasking temporarily
 RS485.On ;Transmit mode
 RS485.Put(packet) ; Send the data
 Task.On ; Multitasking restored
End

 Note that the transceiver will be reset to receive mode immediately the serial output buffer
becomes empty, even if only momentarily. To guard against this happening in the middle of a
packet you should ensure your packet of data is placed in the serial output buffer faster than it
can be transmitted. Currently the best way to do this is to turn off multi-tasking around the
operation.

If you use this method you should ensure that the packet you are sending is less than 256 bytes
so that the serial buffer doesn't fill up, blocking your task, and consequently delaying other tasks
in the system.

Look

Look Int

Look fetches, and returns the value of, the next character in the serial input buffer. If there was
no character waiting it returns –1.

Get

OutputBuffer

OutputBuffer SerialOutputBuffer

This message allows you to monitor the output side of the serial port.

The following messages usually refer to the serial input buffer:

Free
Queue

However, you may refer to the serial output buffer like this:

serial.OutputBuffer.Free

431 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

serial.OutputBuffer.Queue

Example

Await serial.OutputBuffer.Queue = 0 ; wait for characters to transmit.

On

On

If the serial port handshake mode has been set to 3, this message turns the RS-485 Transceiver
direction control to transmit mode.

See RS-485 half-duplex mode for more details.

Put

The Put message sends one or more characters to the serial output buffer. It will block (i.e.
wait) if the buffer is full.

Put can send:

Single characters

Arrays

Strings

See below for each of these.

Send a single character

Put(Int character)

Sends a single character to the serial output buffer, waiting if the buffer is full.

character will be masked to an 8-bit value, resulting in a character in the range 0 - 255

Send an Array, or Array segment

Put(array a [, Int start, Int size])

Sends some or all of the bytes in an array, waiting if the buffer is full

a An array of 8 bit integers

start(default 0) element number at which to start transferring data from array

432SerialPort

Copyright © 2009-2021 Venom Control Systems Ltd

size (default whole array) how many bytes to transfer

Send a String

Put (String s)

Sends the contents of a string constant or string object to the serial port, waiting if the buffer is
full

Queue

Queue Int

Queue returns the number of characters waiting in the serial input buffer.

If you want to know the Queue value for the serial output buffer, see OutputBuffer

Speed

Speed Int

The Speed active variable controls the baud rate of the serial port.

To ensure a baud rate change happens smoothly you should ensure that the serial output buffer is
empty before changing baud rate.

The baud rates available on the serial ports range from 300 to 4,500,000 subject to the
limitations in the table below, though the highest ‘standard’ baud rate is 115,200.

For some higher speeds the exact baud rate is not always possible so the closest alternative will
be selected. So long as it is within a couple of percent of the correct value it will be acceptable.
Reading Speed gives the exact rate used, subject to the accuracy of the system clock crystal
oscillator.

The actual range of speeds available depends on which serial port is used and varies in
proportion to the the system clock speed. The upper and lower limits are shown in the table
below.

system clock serial port 1 speed range serial ports 2 - 5 speed range

16MHz 300 - 4,000,000 150 - 2,000,000

72MHz 1200 - 4,500,000 600 - 2,250,000

433 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Code Snippet: Keeping the Serial port Speed when changing System Clock
speed

If you change the system clock speed the serial port will change speed in proportion; to change
the clock speed on the command line without losing control of the VM2 you should change the
serial port speed in the same line of code, e.g. assuming your serial 1 speed is currently 115200:

speed := 16 serial.speed := 115200
Or if you don't know the current serial port 1 speed:

temp := serial1.speed speed := 16 serial1.speed := temp

This will return to the command line without any serial data corruption.

Timeout

Timeout Int

This active variable controls the timeout for software handshaking. If an XOFF character shuts
off the serial port's transmitter, and the subsequent XON is missed for some reason, the
transmitter would stay off forever. However if timeout is set to a non-zero value, the transmitter
will be turned on again after the timeout period.

Timeout defaults to 10,000 (10 Seconds) currently. It may be turned off entirely by setting it to
zero. Its value is set in milliseconds, up to

the maximum positive integer value which would correspond to about 24 days.

Timeout is set and stored in milliseconds but the latency on checking the timer is normally 80ms.

See also: Handshake.

Valid

Valid Int

Valid is used to detect errors in serial reception. It returns five error flags as bits in a binary
number. The flags are all reset to zero once Valid has been read.

Bit Value Meaning Description

0 1 Parity Error Incorrect parity in the received character

1 2 Framing error The Stop bit was 0 (should be 1), caused by garbage
or incorrect line speed (baud rate)

2 4 Noise error The UART detected invalid changes of state on the
serial line

434SerialPort

Copyright © 2009-2021 Venom Control Systems Ltd

3 8 UART overrun The UART buffer received another character before
the interrupt routine could remove the previous one.

4 16 Buffer overrun The input buffer overflowed.

You should be able to use Valid to detect serial breaks, i.e. when the serial line is put into the
'active' state for a period (much) longer than the character frame. If Valid continuously indicates
a framing error, and no new characters have been received then there is a serial break.

Accepting Print

Print To <SerialPort> , <print list>

Printing to the SerialPort object sends the printed characters out of the serial port. The following
print keywords are supported; others are passed on unprocessed in their internal representation
and so should not be used.

BEEP ASCII 7

BS ASCII 8

CLS ASCII 12

CR ASCII 13 & 10

Chr n ASCII character n

 Note: you can also print to an object by sending it the PrintF message.

Shaft

Shaft monitors quadrature-phase inputs to keep track of the position of rotary (shaft) encoders
using the STM32F103's internal timer hardware. Up to 3 shaft encoders may be monitored at
very high frequencies.

Options available

The inputs may be pulled (up or down) or floating, the direction of counting may be changed and
hardware digital filtering may be applied to the input signals.

Future options

(It may be able to use inputs in the form UP/DOWN and CLOCK, though this has not been
implemented yet).

435 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make

Count

Reset

Print

Creation

Make <object> Shaft (Int chan [, Int attributes [, Int
filter]])

A new Shaft object is created, monitoring channels chan and it's associated channel (chan + 1).

chan gives the value of one of the VM2 channels to use for the shaft encoder input - it must be
one of: $10, $16 or $36.

The other channel used is implied by chan, and is always chan + 1 - ie. $11, $17 or $37
respectively.

attributes allows you to set the direction of counting of the Shaft object and also whether the
inputs are pulled high, low, or not at all.

In more detail, the binary bits in the attributes parameter have these significances:

Bit 2 Bit 1 Bit 0

When 1 Floating input 'Active high' Reverse counting

When 0 Input pulled to inactive state 'Active low' Normal counting

 These are exactly the same input attributes as used for Digital, except for Bit 0, which allows
you to reverse the direction of counting.

The optional filter parameter may be used to set up digital filtering of the input signal.
Read more...

Example

Make encoder1 Shaft($36) ; Encoder input on channels $36 and $37.

Each Shaft object takes around 40 bytes.

Shaft objects can count edges at over 1MHz.

436Shaft

Copyright © 2009-2021 Venom Control Systems Ltd

Count

Count Int

An active variable that holds the count of quadrature phase edges seen by the Shaft object. The
count can be set or read. The diagram below gives an example of input waveforms and the
count that they might produce. Note that the count will change on every edge.

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 - 1

If the count goes in the wrong direction when you rotate the encoder you can reverse it by
setting attributes in Make.

Count can hold values up to around ±2 billion.

See also Reset, PulseCounter

Reset

Reset

Resets the count to zero.

See also Count.

437 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Printing

Print <Shaft>

Prints the current value of the Count like this:

[Shaft: 1330]

See also Count.

SMSLink

The SMS controller object simplifies the sending and receiving of messages using any GSM
device that complies with the ETSI standards and supports PDU mode. It has been tested with a
Siemens (now Cinterion) MC-35 GPRS terminal and should work with many other GSM
terminals or mobile phones with suitable serial adapters.

The MC-35 has 35 message memory locations. An incoming message fills the lowest numbered
empty memory location. The SMS object can read and delete any of these locations by number.
Other devices may have different message memory sizes - consult the documentation when
designing your code.

Summary of Messages

Make

Address

Empty

Format

Get

Length

Remove

Send

Time

Print To

Print

Character Set

For most purposes, all you need to know is that the SMS object will allow you to pass ASCII
messages to and from strings or text buffers.

The rest of this section describes various provisions for data other than ASCII text.

There are 3 different character encodings in common use on GSM networks:

438SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

GSM 7 bit encoding which includes ASCII and some European characters and is the default
for text.

UCS2 (16 bits)which is a two byte representation of the Unicode code points up to $FFFF
(Covers many European and Middle Eastern alphabets and symbols) and can also be used for
binary data.

GSM 8 bit encoding which is usually used for binary non-text data such as graphics, ringtones
and.SIM updates

The SMS object can use all three of the above encodings in GSM messages.

For communication with the Venom program, it uses text or 8 bit and 16 bit encodings,
translating to and from the GSM 7 bit code as needed:

8 bit ISO-8859-1 with the addition of code point 0x80 for the Euro (€) symbol, borrowed
from the WIN-1252 character map. ISO-8859-1 is the first 256 code points of Unicode
and a superset of ASCII.

16 bit UCS2. The only character translated between this and text data types is the Euro
Symbol. If a 16 bit message is received into, or transmitted from, a 16 bit Venom buffer
or array variable, all values are passed unchanged.

Sending in GSM7 Format

When sending messages, the message passed to the SMS object as a string or text buffer is
assumed to be an ISO-8859-1 string and converted where possible to GSM 7 bit. The
following codes will be translated successfully:

All ASCII printable characters except ` (back quote, code 96 or $60).

ASCII CR (13) and LF (10)

These are usually available from your keyboard.

The following ISO-8859-1 and Win-1252 characters, listed with their decimal and hex codes
for convenience.

char

€

¡

£

¤

¥

§

¿

dec

128

161

163

164

165

167

191

hex

80

A1

A3

A4

A5

A7

BF

char

ß

à

ä

å

æ

è

é

dec

223

224

228

229

230

232

233

hex

DF

E0

E4

E5

E6

E8

E9

439 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Ä

Å

Æ

Ç

Ñ

Ö

Ø

Ü

196

197

198

199

209

214

216

220

C4

C5

C6

C7

D1

D6

D8

DC

ì

ñ

ò

ö

ø

ù

ü

236

241

242

246

248

249

252

EC

F1

F2

F6

F8

F9

FC

The following characters belong to the GSM set but not to ASCII or ISO-8859-1, but their
GSM codes may be inserted into an outgoing message and will display correctly on a mobile
phone.

char dec hex

16 10

18 12

19 13

20 14

21 15

22 16

23 17

24 18

25 19

26 20

Receiving in GSM7 Format

When receiving messages encoded with the GSM encoding, the characters described above will
always be received as sent.

UCS2 Format

Receiving

If a received message uses the UCS2 character encoding and is restricted to the low 256 code
points, the entire set of ISO-8859-1 characters as tabulated below will be will be received
correctly as text. Additionally the Euro symbol ($20AC in UCS2) is translated to $80, which is
not a defined code point in ISO-8859-1 but mapped to the Euro Symbol in the commonly used
WIN-1252 character set so it will display correctly on many terminal configurations.

440SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

Sending

All values from 0 to $FF are sent unchanged as 16 bit values, with the exception of $80 which is
translated to $20AC, the UCS2 code point for the Euro symbol.

NUL 0 0 *[1]

SOH 1 1

STX 2 2

ETX 3 3

 4 4

 5 5

 6 6

BEL 7 7

BS 8 8

TAB 9 9

LF 10 A

 11 B

FF 12 C

CR 13 D

 14 E

 15 F

 16 10

XON 17 11

 18 12

XOFF 19 13

 20 14

 21 15

 22 16

 23 17

 24 18

 25 19

 26 1A

ESC 27 1B

 28 1C

 29 1D

 30 1E

 31 1F

@ 64 40

A 65 41

B 66 42

C 67 43

D 68 44

E 69 45

F 70 46

G 71 47

H 72 48

I 73 49

J 74 4A

K 75 4B

L 76 4C

M 77 4D

N 78 4E

O 79 4F

P 80 50

Q 81 51

R 82 52

S 83 53

T 84 54

U 85 55

V 86 56

W 87 57

X 88 58

Y 89 59

Z 90 5A

[91 5B

\ 92 5C

] 93 5D

^ 94 5E

_ 95 5F

€ 128 80

 129 81 *[1]

 130 82

 131 83

 132 84

 133 85

 134 86

 135 87

 136 88

 137 89

 138 8A

 139 8B

 140 8C

 141 8D

 142 8E

 143 8F

 144 90

 145 91

 146 92

 147 93

 148 94

 149 95

 150 96

 151 97

 152 98

 153 99

 154 9A

 155 9B

 156 9C

 157 9D

 158 9E

 159 9F

À 192 C0

Á 193 C1

Â 194 C2

Ã 195 C3

Ä 196 C4

Å 197 C5

Æ 198 C6

Ç 199 C7

È 200 C8

É 201 C9

Ê 202 CA

Ë 203 CB

Ì 204 CC

Í 205 CD

Î 206 CE

Ï 207 CF

Ð 208 D0

Ñ 209 D1

Ò 210 D2

Ó 211 D3

Ô 212 D4

Õ 213 D5

Ö 214 D6

× 215 D7

Ø 216 D8

Ù 217 D9

Ú 218 DA

Û 219 DB

Ü 220 DC

Ý 221 DD

Þ 222 DE

ß 223 DF

441 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 32 20

! 33 21

" 34 22

35 23

$ 36 24

% 37 25

& 38 26

' 39 27

(40 28

) 41 29

* 42 2A

+ 43 2B

, 44 2C

- 45 2D

. 46 2E

/ 47 2F

0 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35

6 54 36

7 55 37

8 56 38

9 57 39

: 58 3A

; 59 3B

< 60 3C

= 61 3D

> 62 3E

? 63 3F

` 96 60

a 97 61

b 98 62

c 99 63

d 100 64

e 101 65

f 102 66

g 103 67

h 104 68

i 105 69

j 106 6A

k 107 6B

l 108 6C

m 109 6D

n 110 6E

o 111 6F

p 112 70

q 113 71

r 114 72

s 115 73

t 116 74

u 117 75

v 118 76

w 119 77

x 120 78

y 121 79

z 122 7A

{ 123 7B

| 124 7C

} 125 7D

~ 126 7E

 127 7F *[1]

 160 A0

¡ 161 A1

¢ 162 A2

£ 163 A3

¤ 164 A4

¥ 165 A5

¦ 166 A6

§ 167 A7

¨ 168 A8

© 169 A9

ª 170 AA

« 171 AB

¬ 172 AC

 173 AD

® 174 AE

¯ 175 AF

° 176 B0

± 177 B1

² 178 B2

³ 179 B3

´ 180 B4

µ 181 B5

¶ 182 B6

· 183 B7

¸ 184 B8

¹ 185 B9

º 186 BA

» 187 BB

¼ 188 BC

½ 189 BD

¾ 190 BE

¿ 191 BF

à 224 E0

á 225 E1

â 226 E2

ã 227 E3

ä 228 E4

å 229 E5

æ 230 E6

ç 231 E7

è 232 E8

é 233 E9

ê 234 EA

ë 235 EB

ì 236 EC

í 237 ED

î 238 EE

ï 239 EF

ð 240 F0

ñ 241 F1

ò 242 F2

ó 243 F3

ô 244 F4

õ 245 F5

ö 246 F6

÷ 247 F7

ø 248 F8

ù 249 F9

ú 250 FA

û 251 FB

ü 252 FC

ý 253 FD

þ 254 FE

ÿ 255 FF

*[1] Code values $00-1F, $7F-9F are not defined in ISO-8859-1 but will be received and may
result in characters displayed according to the font used in your terminal, or with the usual ASCII
control character meanings.

442SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

Binary Data

The SMS object can also use 8 bit and 16 bit Buffer and Array objects for sending and
receiving binary data using the GSM 8 bit and 16 bit (UCS2) data coding schemes. When this is
done no code translation at all is performed.

Creation

Make <object> SMSLink(Int serialport)

serialport 1 - 5 to select serial port to which GSM device is connected

Returned value: an SMSLink object variable.

The serial port must exists as a venom object before an SMSLink object is mde using it.

Example

Make serial SerialPort(38400, 2, 0)
Make sms SMSLink(2)

Debug

Debug Int

Turns debugging mode on (value=1) or off (value=0, default)

In debugging mode, all output from the GSM device is echoed to serial port 1.

This will only work if the GSM device is not connected to serial port 1.

Example

-->Make sms SMSlink(2)
-->sms.debug := 1
-->sms.get(2)
AT+CMGF=0
OK
AT+CMGR=2
+CMGR: 1,,33
0791449737709399040C914477195524380000113092414135400FF4329E0E12D7CDA00D6F53DEF800

OK
-->sms.debug := 0

443 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

-->sms.get(2)
-->

In this example, the long string of hex digits represents a message stored in location 2.

Address

Address String

Returns the senders address (i.e. phone number) of the last message read. This is a fixed string
whose contents remain valid until a new message has been read or any message is deleted.

Example:

print sms.address, CR
447791554283
-->

Note: the number format includes the international code in the first two digits. This example
shows the equivalent of the UK number 07791 554283

Empty

Empty

Clears the internal buffer holding the result of Print To sms statements.

This is not usually needed, as sending a message clears the buffer anyway.

Format

Format Int

This sets the format for encoding sent text messages which can be in 7 bit GSM code (default)
or 16 bit Unicode

A value of 16 causes any text messages (from string or text buffer) to be encoded as 16 bit
Unicode (UCS2).

A value of 7 causes any text messages (from string or text buffer) to be encoded using GSM 7
bit encoding.

Messages sent from 8 bit and 16 bit integer buffers or arrays are always sent in 8bit or 16 bit
mode respectively and unaffected by the Format setting.

444SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

Example:

Make sms SMSlink(2)
sms.Format := 16
Print To sms, "This is a test message in 16 bit format"
sms.send("447791554283")
sms.Format := 7
Print To sms, "This is a test message in 7 bit format"
sms.send("447791554283")

It is unlikely that 16 bit mode will be required for text, especially as Venom does not currently
support Unicode in strings. If you need to send messages containing characters with code points
over 255, load the message into an array or buffer of 16 bit integers and use that instead.

Get

Get(Int n[, Buffer/Array/String buf) Int

n Message store number, starting from 1.

buf Buffer to which the message contents will be appended

or array to which the message contents will be written

or string to which the message contents will be written

Returned value indicates the type of message found in the message store.

-1 Error (invalid message number)

0 No message

7 Received GSM 7 bit encoded text

8 Received 8 bit binary message

16 Received 16 bit text or binary message

Reads a message from the numbered store location in the GSM device

Stores the date/time, originator and text of the message in the SMS object. (see Time, Address
and Print)

Optional Buffer, String or Array Parameter

If a buffer or Array parameter is specified, its data type can be text or any integer type.

32 bit arrays are not permitted

The array must be big enough to hold the message.

445 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

If a string variable's allocated size is too short for the message, the message is truncated.

In certain cases with Buffers, conversion for the Euro symbol is performed between 8 bit (€ =
$80) and UCS2 (€ = $20AC), as described in the following table.

Buffers and Strings

Message
type

Buffer type Conversion

7 16 or 32 Euro symbol: $80 converted to $20AC

16 text or string var. $20AC converted to $80

16 8 integer values over $7f are truncated to 8 bits

all other combinations simple copy

Arrays

For arrays, the data is copied unmodified, except that a 16 bit message read to an 8 bit array
will be truncated.

 See also: Character Set

Examples

-->Make sms SMSlink(2)
-->sms.get(3)
-->print sms
[SMS from 447791554283]
2011-03-29 14:15:03
print txt [€]
-->

-->Make s string(160)
-->print sms.get(3, s), CR
 7
-->print s, CR
print txt [€]
-->

Length

Length Int

Returns the length of the GSM 7 bit encoded message stored in the SMS object as a result of
Print To sms statements.

446SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

If the sms object is set for 7 bit text sending (the default) this length takes into account a handful
of characters that have to be encoded as a two-character escape sequence.

For a message to be sent successfully using 7 bit GSM encoding, this value must not exceed
160.

For a message to be sent using 16 bit encoding, the maximum is 70.

The following characters result in an escape sequence and require two characters in 7 bit mode:

^ { } \ [~] €

Length(Str) Int

Performs the same length calculation on a fixed string or text buffer.

Length(Int msgno) Int

msgnoMessage number

This form of the Length message reads an SMS message from the GSM device's memory just
like Get, but the returned value is the length of the message.

Example

-->print sms.length
 0-->print to sms, "test "
-->print sms.length
 5-->print to sms, "message"
-->print sms.length
 12-->
-->n := sms.length(13)
-->print "message memory 13 has a received message of length ", n, CR
message memory 13 has a received message of length 37
-->

Remove

Remove(Int msgno)

msgno Message store location to be deleted

Deletes numbered message from GSM device's message memory

Clears the current message

447 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Example

-->Print sms.length(13)
 37-->Print sms.get(13)
 7-->sms.remove(13)
-->print sms.length(13)
 0-->print sms.get(13)
 0-->

Send

Send(dest[, message]) Int

dest String or text buffer holding the recipients phone number

messageString or buffer holding the text of the message

Returned value: True (1) if successful, False (0) if sending failed.

Effect of 2nd Parameter on Message Data Encoding

Param Max length Encoding

none 160 The message is the result of any preceding Print To sms
statements, encoded as for string or text buffer.

string

text buffer

160 (7 bit)

70 (16 bit)*

The message is sent by default using GSM 7 bit coding, unless the
Format message has been used to change this to 16 bit UCS2
coding.

8 bit
buffer

or array

140 Contents are sent using GSM 8 bit encoding. This is not usually used
for text messages in mobile phones, but for binary messages such as
ringtones, SIM updates and graphics.

16 bit
buffer

or array

70 Contents are sent in a message that specifies UCS2 encoding in the
header. Mobile phones display this using the UCS2 mapping, or it can
be used for binary data.

*16 bit mode is enabled by the Format message to the SMS object

Sending a message has no effect on the current stored incoming message.

 The Send message will wait for confirmation that the message has been sent successfully. If
no confirmation is received, it will timeout after 20 seconds.

 See Length, Print To, Format

Example

; two ways of doing the same thing

448SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

; (1)
Print To sms, "this is a test message"
If sms.Send("447791554283")
 Print "sent OK",CR
Else
 Print "sending failed"
; (2)
If sms.Send("447791554283", "this is a test message"
 Print "sent OK",CR
Else
 Print "sending failed"

Time

Time Int

Returns the timestamp of the current (most recently read) message in Venom time i.e. seconds
since the beginning of 1990.

It is sometimes useful to use this in conjunction with the DateTime object to convert date and
time to components, but the simple integer form returned here simplifies comparison with other
time values.

Example

-->make dt datetime
-->sms.get(1)
-->dt.time := sms.time
-->print dt
2011-03-29 14:14:44-->

Note you can also get formatted time and date of a received message using print

Print sms:1

Accepting Print

Print To <SMSLink>, printlist

The print output is appended to an internal buffer for subsequent sending.

If the limit of 160 characters is exceeded the extra characters are discarded without warning.

 See also: Send, Empty, Length, PrintF

449 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT

Print <SMSLink>:select [: format]

Select
Value

What's Printed

none Print originator, date/time and message text on three separate lines

0 Print originator (i.e. sender's phone number)

1 Print a string containing the date and time of the message.

If a second colon operator is present, it controls the format of the date and time info
in exactly the same way as the first colon operator when printing a DateTime object.

2 Print the message text

If the message is empty, the string: "[SMS: empty]" is always printed.

-->print sms
[SMS from 447791554283]
2011-03-29 14:15:13
test str [€]
-->print sms:0
447791554283-->print sms:1
2011-03-29 14:15:13-->print sms:2
test str [€]-->

Code Example

Sending Data Readings by Text

In this example, the VM2 monitors two voltage readings via 10 bit analogue inputs.

On receipt of a text message consisting of the word "READINGS", it sends them in a text
message by reply.

If V1 exceeds a critical level, a message is sent to an alarm number immediately, and repeatedly
every 5 minutes .

#Define v1_alarm_level 614 ; alarm level
#Define alarm_number "0797626xxxx" ; mobile # for alarm message

To init
 Make v1 Analogue(40) ; the voltage measurement inputs
 Make v2 Analogue(41)
 Make serial2 SerialPort(38400, 2, 0) ; set up serial port

450SMSLink

Copyright © 2009-2021 Venom Control Systems Ltd

 Make sms SMSController(2) ; SMS object uses serial 2
 Make msg String(160) ; for received message
 Make alarmtimer timer(300000) ; 5 minute timer for alarm repeats
End
To main

 Every 5000 ; poll for request every 5 seconds
 [
 print "v1 ", v1.value * 0.00488:1:2, " v2 ", v2.value * 0.00488:1:2, CR
 Repeat 4 ; poll 1st 4 message memories
 if SMS.Get(index, msg) > 0
 [
 Print "Received:",CR, sms, CR
 If msg.Compare("READINGS") = 0
 [
 Print To sms, "V1 = ", v1.Value * 0.00488:1:2, CR,
 "V2 = ", v2.Value * 0.00488:1:2
 sms.Send(sms.Address) ; Reply to sender of incoming message
]
 sms.Remove(index) ; clear message memory
]
 ; check alarm level
 if v1.Value > v1_alarm_level And alarmtimer.done
 [
 Print "v1 > alarm",CR
 alarmtimer.go ; restarts the timer
 Print To sms, "ALARM: V1 = ", v1.Value * 0.00488:1:2
 sms.send(alarm_number)
]
]

End

SMTPSender

SMTP stands for Simple Mail Transport Protocol. Its most common usage is for personal
computers to send email to a server for forwarding to its final destination. Hence the Venom
SMTP object is for sending email.

See also TCP/IP Networking

451 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make

Debug

Send

Creation

Make <object> SMTPSender(server, id [, username,
password])

serve
r

String or text buffer containing the host name of a SMTP server which will be able to
accept mail from the VM2.

id An optional hostname for the VM2 itself. If supplied as an empty string, the SMTP
object will send its IP address in square brackets as its id when talking to the server,
in compliance with the SMTP standard. The ID string must be present even if only as
an empty string.

usernameUsername for authenticating with the SMTP server, if required.

passwordPassword for authenticating with the SMTP server, if required.

This creates an SMTP object that can then be used for sending email messages.

Authentication

Most SMTP servers do not require authentication if they belong to the same ISP that provides
your internet connection; however if you are using a different mail server you may still be allowed
to use it as long as you identify yourself as a permitted user. There are several authentication
mechanisms: the VM2's SMTP object only supports the mechanism known as "AUTH PLAIN".

Debug

Debug Int

The default value is 0.

Setting a value of 1 will echo the exchange of commands and responses with the SMTP server
to serial port 1, useful for confirming that the object has been correctly set up for the server with
which it will be used.

452SMTPSender

Copyright © 2009-2021 Venom Control Systems Ltd

Send

Send(Str fromaddr, Str toaddr, Str subject,
 Var headers, Var body) Int

Sends an email message.
Returns result value as follows:

0 - sent OK
1 - unable to connect to server
2 - Error in server commands
3 - Error sending headers
4 - Error sending content

fromaddr string or text buffer originator's email address.

toaddr string or text buffer recipient's email address.

subject string or text buffer "Subject:" line of message

headers string, text buffer or file
optional headers, such as "Sender: ", "Reply-
to: "

body string, text buffer or file the message contents

Email addresses may be in the form of these examples:

 smith@abc.com
 <smith@abc.com>
 John smith <smith@abc.com>

The third form is preferred, if for no other reason than scoring fewer points on spam filters.

SPI

SPI objects control the VM2's two SPI interfaces.

Each SPI object controls four VM2 channels. These are connected to the CS, CLK, MISO
and MOSI lines.

The connections from the VM2 to a device are as follows. See the VM2 data sheet for the
channel numbers:

VM2 Function Connect to

MISO Device’s data out*

453 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

MOSI Device’s data in

CLK Device’s serial clock

CS Device’s chip select

*Not necessary if no data comes back.

Addressing multiple devices on a single SPI bus

SPI bus 2 has two digital ports associated with it called SPI ADDR 0 and SPI ADDR 1, on
channels $70 and $71. These may be used (in conjunction with some external logic gates) for
addressing up to four devices on SPI bus 2. Some or all of these addresses may be used by the
Ethernet, one or more Memory Cards, or USB Host Filing system objects, for example.

Note that even though they are physically located on pins near to SPI bus 1, these address lines
are intended for use with SPI bus 2.

You can emulate this address functionality for SPI bus 1 by choosing your own address line(s)
and controlling them with Digital objects.

Different modes

You can also connect multiple devices where each device has a different bus speed, clock mode
and address. To do this you should create as many SPI objects as you have devices. Each
object is used to control a particular device. When an SPI object's On message is sent, this
selects the correct speed, clock mode and address. Note that for SPI bus 1 you will have to set
the address yourself.

Summary of messages

Make

Off
On

Put

Creation

Make <object> SPI (Int bus[, Int speed[, Int clk_mode
[, Int Address]]])

Parameters explained

bus: This selects which bus to use - either 1 or 2.

speed: (default: minimum) sets speed for SPI clock in kHz. The actual speed is the system

454SPI

Copyright © 2009-2021 Venom Control Systems Ltd

clock divided by a power of 2, and will be set to the requested value or the nearest value below
it from the table below

For a VM2 running at 72MHz, the actual speeds available are as shown in the table. For lower
system speeds the values in the table scale down proportionally.

Speed (kHz)

140 (bus 2 only)

281

562

1125

2250

4500

9000

18000

36000 (bus 1 only)

clk_mode: This determines the clock polarity and phase as in the table below. The default
value is 0.

clk_mode Clock polarity CPOL Clock phase CPHA

0 Clock idle low 0 Capture on 1st clock edge 0

1 Clock idle low 0 Capture on 2nd clock edge 1

2 Clock idle high 1 Capture on 1st clock edge 0

3 Clock idle high 1 Capture on 2nd clock edge 1

Sometimes the clock mode is call the SPI tranfer mode and is represented by two variables:
CPOL (clock polarity) and CPHA (clock phase). These two variables can each have the value
0 or 1. The clk_mode parameter is equal to CPOL*2 + CPHA.

Address: This specifies the address set up on channels $70 and $71 when using SPI bus 2.
This address may be used to decode access to several devices on the one SPI bus by using it go
gate the CS signal. Note that the Ethernet, Memory Card and USB Host interfaces usually use
the first three of these addresses, but you should check to see which addresses are free on the
hardware you are using. Address is in the range 0 to 3.

SPI is a Zero-Memory object

455 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 Warning: If you are using SPI bus 2 on typical VM2 hardware that has memory card
interfaces, you should avoid leaving a memory card in the holder without making a file system on
that card. This would leave the card unpowered, causing data corruption on the SPI bus 2
connections.

Off

Off

This pulls the Chip Select signal high to end a communication.

On

On

This pulls the Chip Select signal low to start a communication.

Also, On will re-program associated hardware to select the correct address (SPI2 only), clock
speed, clock mode, etc.

Locking

SPI objects use Venom resource locks to prevent different tasks interfering with each other's use
of the SPI hardware. There are two locks; each lock is associated with an SPI bus hardware
module (rather than the SPI object.)

If you are using the same SPI hardware in more than one task (e.g. other tasks might be
accessing Ethernet or a Memory Card, or another SPI object on the same SPI port) then you
should lock the hardware (via the object) while you are using it. The best places to apply and
then release the lock are just before On and just after Off. For example:

Make spi2 SPI(2, 18000)
...
spi2.Lock
spi2.On
spi2.Put(byte)
spi2.Off
spi2.Unlock

See Locking for more information.

456SPI

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put(Int data[, Int nbytes]) Int

The Put message both sends and receives data. Every byte you send out also results in a byte
being returned.

If you only want to transmit data then you can ignore the result. If you only want to receive data
then you can use a dummy value for data.

For sending and receiving a single byte of data use Put with a single parameter:

result := s.Put(data)

You can send and receive up to four bytes in a single Put by using the nbytes parameter to
specify how many bytes of the value data to send:

result := s.Put(data, 3) ; send three bytes of the value 'data'.
These bytes are sent in Big Endian format - ie. the most significant byte is sent first.

Little Endian

If you want to send and receive data in Little Endian format then you should use a negative value
for nbytes:

result := s.Put(data, -3) ; send three bytes of the value 'data', LSByte first.

Note: Data is clocked in and out MSBit first.

String object

String objects are strings of variable text - that is you can assign the text they are to hold at
runtime, unlike string constants, e.g. "A string", which are defined at program time.

A string object has a capacity, or maximum length - this is the memory reserved for it when it is
created. The actual text held in the string at any time may be less than the capacity of the String
object, but it can never be more.

The text of a string object is null-terminated, i.e. there is a character of value zero at the end of
the text.

String constants

Constant (i.e. quoted) strings and String objects (or variable strings) are very similar - they are
treated the same in almost every situation in Venom2, however you cannot do any write
operations to a constant string, and the Get, Readpoint, Reset and Queue messages
aren't accepted.

457 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Summary of messages

Make

Address

Compare

Element

Empty

Find

Get

Free

Flush

Length

Put

Queue

Readpoint

Reset

Value

Print

Print To

Creation

Make <object> String (Int max_size)

Create a string with a capacity of max_size characters. The string is initialised to be empty.

Usage note: Don't bother using String objects where you could use a variable that refers to one
or more string constants:

s := "some text"
;...and maybe later:
s := "some other text"

Removing Strings

Sometimes you will wish to create a string for temporary use, and then discard it later. You can
remove the string using the .Die message. This returns the memory taken by the string. Also
take a look at AutoDestruct and DELETE as these may be useful.

String constants

458String object

Copyright © 2009-2021 Venom Control Systems Ltd

The maximum capacity of a string is ~64K (65535) bytes long.

Strings use up the memory taken by the text plus an overhead of up to 20 bytes. Eight of
these bytes are the memory taken by any object that is held on the heap and the rest are
used to hold information about the String object. Strings require contiguous memory in the
heap - so if you try to create a very large string in system that has been running for a while
with a lot of dynamic memory allocation going on (creating and killing objects, for example)
then you many find that there is not enough contiguous memory to create the string. In that
case Make will generate a RAM Full Error.

BUG ALERT: Note the following Venom code snippet does not put the contents of the
string constant into the string variable - it overwrites s with the string constant, and,
critically, it loses the string object you made, together with the memory it took. This is an
example of a memory leak, which, if it is repeated enough will result in your application
running out of memory. If you suspect your application has memory leaks in it, you can use
the garbage scanner to detect them.

Do not do this:

Make s String(10)
s := "some text" ; BUG!

One way of doing it correctly is

Make s String(10)
s.Put("some text")

Address

Address Int

Returns the memory address of the first character in the string.

Compare

Compare (String or Buffer str [, Int uncased [, Int length]]) Int

Compare compares two strings. This allows you to put strings in alphabetical order. A Text
Buffer may also be used as the second string.

The integer result returned depends on whether the second string is 'less than', 'greater than', or
the same as the first string. Here, 'greater than' and 'less than' refer to comparing the strings
character by character until one has a higher ASCII value than the other (or they turn out to be
identical strings).

459 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

You can think of the Compare message as a minus sign between the two strings.

The return result is:

> 0
(Positive)

If the second string is 'less than'

= 0 (Zero) If the second string is the same

< 0
(Negative)

If the second string is 'greater than' the first

 For example:

-->Print "The first string" . Compare("The second string")
 -13-->

Though of course normally you wouldn't be comparing two string constants.

Case-insensitive comparison

The optional, second parameter determines whether the comparison is case sensitive or
insensitive. The default value (0) means case sensitive. If the second parameter is 1 then the
comparison is done in a case-insensitive manner:

-->Print "The first string" . Compare("THE FIRST STRING", 1)
 0-->

Note that the case-insensitive compare is done in UPPER Case, which leads to the following
characters being treated as greater than any alphabetic character:

[\] ^ _ `

Length-limited comparison

The optional third parameter, length, will limit the comparison to the first length characters of the
string. If length is missing or zero the length of the comparison will be unlimited.

Element

Element (Int item_number) Int

<String>.(Int item_number) Int

The Element() active variable allows both read and write random access to the contents of a
string as if it were an array. Thus you may read or write individual characters in the string.

If you try to access elements outside the boundaries of the string you will get an Array index out
of range Error.

460String object

Copyright © 2009-2021 Venom Control Systems Ltd

Note: Venom abbreviated syntax allows the use of .() to substitute for .Element().

Note: Write access is only permitted for variable strings, and not string constants; if you attempt
to write to a string constant you will get an Assignment to write-protected item error.

Empty

Empty

Empty sets the string contents to an empty string of length 0 by writing a null character at the
start.

The string is in the same state as if it had just been created.

Empty does not remove the string from memory. To do thus use the message Die.

Find

Find (String str [, Int start_pos]) Int

Find (Buffer buf [, Int start_pos]) Int

Find searches a string for occurrences of the search text.

The search text is held either in another string or in a text buffer.

The search starts at the optional position specified by start_pos (or from the start of the string if
no second parameter is supplied).

If a match is found, the start position of the found text is returned, otherwise the value -1 is
returned.

The following example finds the start position of the first occurrence of a string constant in the
string:

Make s string(100)
s.Put("text ttx txt text")
pos := s . Find ("tex", 3) ; pos will be 13

 If the search text is held in a text buffer, then only the first 256 characters are used.

461 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Flush

Flush

Flush removes any text from before the readpoint, and then copies the remaining text to the front
of the string. The readpoint is reset to 0.

The overall capacity of the string remains the same, but the Length will be reduced if any text is
moved 'forwards'.

Free

Free Int

Free returns the amount of space left in this string - i.e. how many more characters may be Put
or PRINTed to it before it is full.

Get

Get Int

Returns the character from the string at the current Readpoint and increments the Readpoint.

Array index out of range error if at the end of the string.

Length

Length Int

Length returns the current length of the string. This is not the same as the capacity of the String
object.

To find the capacity of a String, you should add Free to Length.

Put

Put (Int character) String
Put (String str) String

Put will append a single character, string constant or string object the text currently held by the
string, but only up to the capacity of the String object. Text that won't fit into the String is
ignored.

462String object

Copyright © 2009-2021 Venom Control Systems Ltd

Dot chaining

Put returns the original String object, so you can use it like this:

Local s := New String(100).Put("(Initial text)")

 Put is only allowed for variable string objects.

 Print To

Queue

Queue Int

Shows how many characters are available to read with Get message, i.e. between
Readpoint and the end of the string.

Readpoint

Readpoint Int

Set or gets the current Readpoint, i.e. the position at which the next Get will read a character.

The string starts at Readpoint = 0

You will get an Array index out of range error if you attempt to assign Readpoint past the current
string length.

 Get

Reset

Reset

This simply resets the Readpoint to 0.

463 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value(Int base) Int
Value(Float) Float

Extracts a numeric value from the start of a string. You can extract floating point values and
integer values of different number bases.

Parameter Interpretation

None or 10 Decimal integer

2 Binary integer

16 Hexadecimal integer

Float Floating point number

Any white space characters at the start of the string are skipped, and the conversion stops at the
first character that is not a valid part of the type of number being evaluated, or at the end of the
string if encountered first.

Leading plus and minus signs are correctly interpreted.

Example

Make s String(10)
Print to s, "123"
Print s.Value
 123
Print s.Value(16)
 291
Print s.Value(Float)
 123.

Other number bases

You can specify any number base up to base 36, assuming use of the letters A-Z or a-z for the
digits above 9.

464String object

Copyright © 2009-2021 Venom Control Systems Ltd

Accepting Print

Print To <String>, <print item>, ...

Strings are able to accept print. The print output is simply appended to any existing text in the
string, up to the capacity of the string.

Text that won't fit into the capacity is ignored. For example:

Make str String(10)
Print To str, "Some text to over-fill the string"
Print str

Gives the result:

Some text

PrintF

 Note: you can also print to an object by sending it the PrintF message.

When printing to a string, CR appends an LF (ASCII code 10) only to the string.

 Print To is only allowed for variable string objects. You can't print to a string constant - you
will get a runtime error.

 Put, PrintF

Printing

Print <String>

Print String : n

Print String : start : n

Printing a string prints out all the text in the string.

If the optional format parameters are used then any subsection of the string may be printed. See
formatting strings for details.

Example

Extract a subsection of a string and put it in another string:

465 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Print To s2, s1:5:3

Stopwatch

Stopwatches are for timing events. Once created they immediately start counting time in
milliseconds. You can reset the time, or set it to any value you like, including negative values.

Summary of messages

Make

Reset

Time

Print

Creation

Make <object> Stopwatch

A new Stopwatch object is created. Its Time is set to zero, but immediately starts incrementing
at 1000 per second. For example:

-->Make s Stopwatch
-->Print s:1
00:00:03-->

See also Timer, RealTimeClock, PulseWidthIn.

Reset

Reset

Resets the Stopwatch’s time to zero.

Time

Time Int

Reads or sets the Stopwatch’s time in milliseconds. Time may be set to any value, including
negative values.

You should be aware that after ~25 days (2,147,483,648 ms), the number of
milliseconds timed by the stopwatch will wrap round and become negative. You should
therefore reset any Stopwatches before this period if you need to rely on their Time

466Stopwatch

Copyright © 2009-2021 Venom Control Systems Ltd

value.

Stopwatches count in milliseconds. The accuracy depends on the VM2's crystal
oscillator. See the VM2 Datasheet

See also PulseWidthIn for timing between edges on signals.

Printing

Print <Stopwatch> : Int f1 : Int dp

Prints the time or the period of the Stopwatch in different formats. f1 gives the format style to
use.

f1 Format Key

:0 DD:HH:MM:SS.sss D is a day digit (0-24)

:1 HH:MM:SS.sss H is an hours digit (0-23)

:2 MM:SS.sss M is a minutes digit (0-59)

:3 SS.sss S is a seconds digit (0-59)

s is a fraction of a second digit,
specified by dp.

dp gives the number of decimal places to print the seconds value to. If dp is zero then no
decimal point or fractional digits are printed.

Tip: if you want to print out any ordinary integer in the format used by Stopwatch or
Timer, you can create a Timer object, set its Period to the value you want to print, and
then print it, remembering to specify printing the Period.

dp has a maximum value of 3.

If no format is supplied the value of the Stopwatch is printed in the form:

[Stopwatch: Time in mS].

467 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Task

A Task object is used to represent and/or control a task.

New tasks may be started with the Start command; Start returns the task object.

A task object is returned by the Start command, and also, the Task keyword will return the
currently running task.

You can’t create a task object using Make or New.

When a task comes to an end (either by running out of code to execute, or with Stop, the task
object may still be sent messages. However it ‘knows’ that the task it refers to does not exist
anymore.

Summary of messages

Creation

Die

Done

State

Print

 See also Stop & List.

Creation

There is no Make for Task objects - they are created by Start.

Die

Die

Die will stop the task. It is equivalent to Stop obj.

tsk . Die

Done

Done Int

Done returns True when the task is no longer running.

Off

Off

Off turns off multitasking. There will be no more task switching until the On message is sent.

468Task

Copyright © 2009-2021 Venom Control Systems Ltd

On

On

On turns multitasking back on after an Off message.

State

State Any

State is a read-write property of Task objects that can hold 'state' associated with a
particular task. It may be used to send signals between tasks.

It often makes sense to set a task's State to an instance of a user-defined Class.

State is initialised to Nil. It is not AutoDestructed when the task dies, so you should take care
of this using an AutoDestruct Local.

Example code

Here is some simple template code to set up a task with some state.

Note: This code takes advantage of the property of Nil that it will return False when sent
any message.

To main
 Local t := Start taskcode ; Start a new task and hold a reference to it.
 Await t.State <> Nil ; Wait for the task to get itself in order.
 ;...
End

;This procedure is run in another task
To taskcode
 AutoDestruct
 Local st := New taskstate

 Task.State := st
 ;...
End

;This Class is used to hold a task's state:
Class taskstate
 Value Int
 ;...

 To Initialise
 Value := 10

469 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 ;...
 End
End

PRINT

Print <Task>

Print or List will print the details of a task, for example

-->Print task
Task 1:
in this_procedure(line 2)
in a task started from main (line 2).
[During bytecode 'BRA' at $2603FE]

TextAnalyser

The TextAnalyser object is used to extract meaningful numbers, words, strings, etc from an input
stream object.

Any object that returns ASCII character values in response to a Get message may be used as
the input stream, for example, SerialPort, Buffer, String.

Summary of messages

Make

Find

Get

GetLast

InputBuffer

Look

Queue

Reset

Valid

470TextAnalyser

Copyright © 2009-2021 Venom Control Systems Ltd

Creation

Make <object> TextAnalyser (Any Source, Int QueueMode)

Parameters

Source The Source can be any object that accepts a Get message that returns
an ASCII character, e.g. a SerialPort or a Buffer(Char).

If QueueMode is 1 or 2, the object must also accept a Queue
message.

QueueMode: QueueMode determines how the TextAnalyser responds when
there is no data available in the source.

0 For 'infinite' input streams, where Get will wait for more data to arrive if
there is none currently.

E.g. SerialPort

1 For 'finite' input streams where Queue returns 0 to indicate the end of
the data.

E.g. text Buffers and String objects.

2 For 'infinite' input streams where Queue must be non-zero before Get
may be called.

E.g. when reading a shared Buffer or file that is being written to
by another task.

Examples

Firstly, some useful definitions of the queuemode parameter values:

;TextAnalyser queue modes:
#Define WAIT_IN_GET 0
#Define END_ON_QUEUE 1
#Define WAIT_ON_QUEUE 2

Creating text analysers to read from different input sources:

Read from serial port 1, wait for input if none:

Make t1 TextAnalyser (serial, WAIT_IN_GET)

Read from a buffer, treat end of buffer as an 'end of input' condition:

Make t2 TextAnalyser (my_buff, END_ON_QUEUE)

Creating a TextAnalyser Object uses ~50 bytes of memory.

471 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Find

Find(str pattern [, Int uncased])

Find reads characters by sending Get to the source until a string of characters matching the
input has been found

If found, the next character to be processed will be the first character following the matched
string.

If not found all input from the source will have been used.

Returns 1 (true) if pattern found, 0 (false) if end of input reached without finding pattern.

patternA string containing the pattern to find. Must be no more than 255 characters.

uncased(default = 0) optional boolean flag to make matching case insensitive

Example

Input: 123456ABC789

ta.Find("ABC") ; will return 1; "789" will be next characters processed.

The Find message temporarily allocates 512 bytes of heap memory while it is processing.

The search string can be no longer than 255 characters

Get

Get analyses characters it reads from its source object, and can convert them to other kinds of
value.

The Get message has several variations, each of which does a particular kind of textual
analysis.

There are variations that read

Integers of different kinds (Decimal, Hexadecimal, etc)

Floating point numbers

Delimited text: a set of characters terminated by a delimiter

The next character (see below)

Read past any characters that occur in a given group (see below)

To read characters until a given string is seen, use Find.

472TextAnalyser

Copyright © 2009-2021 Venom Control Systems Ltd

Reading single characters

Get Int

Get without any parameters will read the next character from the source object. For example:

c := ta.Get

Reading past given characters

Get('x', String skip) Int

Get with a first parameter of 'x' will skip characters specified by the second parameter, a
string.

Get returns the number of characters skipped. The next character to be processed is the next
character in the input text that is not in the skip group.

For example:

ta.Get('x', " \t\r\n0-9") ; Skip whitespace and digits

The skip-character group follows the rules for defining character groups in TextAnalyser.

Reading numbers and strings

To read numbers or strings see the following topics:

Reading numbers

Reading strings

Reading numbers

Read an integer

Get(Int base) Int
Get(Int base, Int length) Int

Get with a single integer parameter (which specifies the number base) will read an integer in that
base, e.g. Hexadecimal:

Print ta.Get(16) ; Read a hex number

You can also specify the maximum number of valid number characters to read:

Print ta.Get(10, 3) ; Read a decimal integer, max three characters

See here for more details.

473 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Read a floating point number

Get(Float [, Int length]) Float

Get with the type parameter Float will read floating point numbers:

Print ta.Get(Float) ; Read a float

You can also optionally specify the maximum number of valid number characters to read:

Print ta.Get(Float, 8) ; Read float, max 8 chars

See here for more details.

Reading numbers - detailed operation

Space characters are skipped until a valid character or '-' or '+' is encountered.

For number bases up to 10 , only numerals are valid characters.

For number bases over 10, numerals and all letters are read as valid characters

For base-n numbers, the letters A-Z or a-z (not case-sensitive) are accepted for digit values
above 9.

For float values, '.', 'E', 'e', '-' , '+' and numerals are accepted as part of the
number; any other character is a delimiter.

Floating point values may include an exponent which may be signed e.g.

876.432 -1.2 1.23E6 -4.0E-10 4.85e+5

If a length is specified in the second parameter, it sets the maximum number of valid characters
to read after skipping initial spaces.

If the first non-blank character encountered is not a valid number character, a value of 0 or 0.0 is
returned and the TextAnalyser's Valid state is set to false.

The first delimiter character encountered is consumed from the input and stored where it can be
retrieved by a GetLast message.

Reading strings

This page describes how to collect characters from the input until a delimiter is seen. To
skip input until a given string is seen, use Find.

Read a delimited string

Get (String dest [, String delimiters]) Int

Get supplied with a parameter that is a String object will copy characters into the string from
the source until one of the default delimiters is seen. The delimiter is not read into the string, but

474TextAnalyser

Copyright © 2009-2021 Venom Control Systems Ltd

is read from the source object. You can discover its value using GetLast.

The default group of delimiters is the set of control characters, i.e. characters with an ASCII
value of less than 32. Examples are carriage return, line feed and tab.

You can also supply an explicit delimiter set as character group.

Example:

Make str String(100)
ta.Get(str, "\r\n*") ; String ending with line end or '*'

It is also possible to specify that the string be read in CSV format.

Detailed operation

The destination String object is emptied and reset before reading begins

Get returns the number of characters read into the string.

The delimiter character is not read in to the string, but is not the next character to be
processed. Instead its value is available using GetLast.

If the destination string is filled to capacity before a delimiter is seen then reading stops and
Get returns.

 There is a difficult-to-check-for situation where the string in the source is exactly the
same length as the destination string capacity. In this case the delimiter remains in the
input stream as the next character to be read. This issue will be addressed by a functional
improvement at a later date.

Groups of characters

The following rules decribe a shorthand way of defining characters sets used in the
TextAnalyser.

"-" between two characters indicates a range e.g. "a-zA-Z0-9". To use '-' explicitly, put
it at the beginning or end of the list.

"̂ " at the start of the string inverts the meaning: a delimiter is anything NOT in the list

Control characters should be explicitly defined using \, e.g. "\r\n"

Other ASCII characters may be specified using \$hh, see escape sequences.

Examples

" /:,\t" Space, slash, colon, comma, tab are delimiters
"^-0-9" Anything except '-' sign and numerals is a delimiter
"^0-9a-zA-Z" Delimiter is anything non-alphanumeric

CSV - Comma Separated Variables

475 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

This is a widely used file and data format, though there is no fixed official standard for it.

CSV can be exported by many spreadsheet programs and is also the data format used in
NMEA data from GPS units and other navigational aids.

CSV mode is selected by specifying a delimiter list as the exact string ",," (two consecutive
commas) or any other pair of the same character which is used as the separator.

The protocol analyser makes the following interpretations in CSV mode:

Input fields are terminated by comma ',' (or other chosen separator character), a line feed
'\n' or end-of-input condition.

Unquoted leading and trailing spaces are ignored

All unquoted control characters except linefeeds are ignored.
Any data enclosed in double quotes may contain leading and trailing spaces, commas and non-
printing characters which are copied into the data string.

Within double quotes, a pair of consecutive double quotes inserts a double quote character
into the field.

The comma or other delimiter is consumed and is not seen by a subsequent Look or Get
message but can be retrieved by a GetLast message.

Note that CSV mode will correctly return empty strings if there are consecutive commas, or
commas separated by nothing but unquoted space.

GetLast

Getlast Int

This message retrieves the character that terminated the last string or numeric read.

Typically this is:

',' comma or other specified separator between items in a line

10 LF in CSV mode if string was at end of line terminated with CRLF

13 CR in string (not CSV) mode if line ended with CRLF

-1 If an end-of-input condition was met

476TextAnalyser

Copyright © 2009-2021 Venom Control Systems Ltd

InputBuffer

InputBuffer (Object [,Int Queuemode])

This resets the Protocol analyser to use a different source of data from that specified when first
created..

This includes the effect of a Reset message so the next character to be read will always be
from the new source.

By default the end-of-input policy remains unchanged; this can be overriden with the
Queuemode parameter which, if present, has the same values as the Queuemode parameter
when a new TextAnalyser is created.

Look

Look Int

Returns the next character to be processed.

If there is no more input and the object was created with queuemode value of 1 (see
Creation), -1 is returned.

By definition this returns the same value that Get would, but without consuming the character
from the input stream.

Queue

Queue Int

The Queue message returns the numbers of characters known to be available in the input
stream. It uses the Queue message to the input object, and adds any character buffered by the
protocol analyser itself.

Reset

Reset

Reset is needed when the input stream source object has changed internally. This could occur
if the input stream object has a readpoint that has been changed or if the data inside the input
stream object has been overwritten.

The TextAnalyser object caches a single character from the input stream when it reads a
delimiter character that is not subsequently used. Reset clears out this cache.

477 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Valid

Valid Int

Returns True (1) or False (0) depending on whether the last Get was successful.

In particular, a return value of 0 means an empty string or numeric value was read (end of input
or delimiter)

UDProt

UDP stands for User Datagram Protocol. UDP datagrams do not require the setting up of a
connection. The transmission is typically fast but survival of the data in transmission is not
guaranteed. UDP is useful for some types of application:

Real time updates of continuously varying data, where any missing value is shortly
overwritten by the next.

Simple query-and-reply protocols with short messages that will fit in a single packet
each. DNS queries normally use this as it is much faster than TCP.

Applications that need tight control over acknowledgement timing.

Any application requiring broadcast data.

UDP is used internally by Venom for:

DNS lookups

Getting the time and date for sending email with the SMTP object

See also TCP/IP Networking

Summary of messages

478UDProt

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Address

Close

Debug

Empty

Find

Get

Length

Open

Put

Send

Queue

Time

Print

Print To

Creation

Make <object> UDProt udp object

Creates a UDProt object. This can then be used to send and receive UDP packets.

To send packets use Put and Send

To receive packets, use Open, Queue, Get and Empty.

Address

Address(Int type) Int

type = 0 Returns Source IP address of received packet

type = 1 Returns Destination IP address of received packet

udp.Address(0) is the same as udp.Get(1)

udp.Address(1) is useful in systems where multicast packets are received, as the VM2
can receive multicast packets for more than one multicast address (even though the Ethernet
object can do some filtering) and needs to know which is which to process or ignore them
correctly.

479 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Close

Close

Closes a UDP listener and frees any existing transmit and receive buffers.

Debug

Debug(1)

Displays a list of UDP objects, showing listening port number where applicable. Note that the list
appears in reverse order of creation.

Debug(2)

Lists the DNS cache, which contains a maximum of 100 most recently looked-up domain
names. Entries are expired after an hour. The expiry time in minutes is shown for each entry. The
most recent and frequently used entries are at the top of the list.

Debug(3)

Shows information about the udp object, including the contents of any outgoing or received
packets.

Any other parameter value will display a brief help message.

Empty

Empty

Clear received packet, leaving buffer ready for next to be received.

Note that the UDP object can only hold one received packet at a time. While the receive buffer
is occupied, any further received packets are ignored. After the Empty message has been sent,
the next received packet will be placed in the buffer.

Find

Find(string host) Int

Performs a DNS query to get the IP address of an internet host
host is a string containing the domain name to look up.

480UDProt

Copyright © 2009-2021 Venom Control Systems Ltd

The returned value is the IP address of the host, or 0 if the query failed.

The names localhost and loopback are recognised internally and converted to the standard
loopback IP address 127.0.0.1.

Note that a connection to a nameserver must be available for this to work for names other than
localhost and loopback. When a PPP connection is made to the internet, the ISP usually
provides a nameserver address during the initial link negotiation. When connected to an Ethernet,
DHCP can be used to discover a nameserver, or its address can be set explicitly by sending the
correct form of Address message to an IP object.

This DNS mechanism uses a local cache of names and addresses to save time on repeated
lookups. In the current version the cache will hold 100 entries, each entry expires an hour after it
was first obtained and least recently used entries are discarded when the cache becomes full.

Get

Get(strobj) Int

This form copies the data contents of any UDP packet to a string variable, up to the maximum
string length of the variable if this is less than the amount of data in the packet. It would be usual
to expect the packet to contain readable ASCII text when using this form of Get. If it is used on
binary data the string would be considered terminated prematurely on the first zero data byte.

The value returned is the length of the string.

Get(1) Int

Returns the IP address of the sender of a received UDP packet.

Get(2) Int

Returns the source port number of a received UDP packet.

Get(3) Int

Returns the destination port number of a received UDP packet.

Get(4) Int

Returns the data length of a received UDP packet. See also Length.

Get(5, Int offset, Int length) Int

Returns a component of the data in a received UDP packet.
offset is the number bytes from the start of the packet data (offset 0 is the first data byte)
length is 1, 2 or 4 and is the size of the data item to return. Values of 1 or 2 bytes are converted
into standard 32 bit Venom integers using unsigned arithmetic, so a byte value of $FF is returned
as 255 and a two byte value of $FFFF is returned as 65535, not as -1.

481 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

udp.Get(Array/buffer a) Int

Returned value: the number of elements transferred

This form reads the incoming packet's data into an array or buffer, much faster than repeated
udp.Get(5, x, y) messages.

The array or buffer can be of any data type.

For an array, the number of bytes transferred is the size of the UDP packet data or the size (in
bytes) of the array, whichever is smaller.

For a buffer, the entire data contents of the UDP packet are appended to the buffer.

Open - To configure the UDP object to listen for incoming packets.

Queue - To check whether a packet has arrived.

Empty - To clear the received packet buffer, leaving it ready for the next packet to be
received.

Length

Length Int

Returns the length of the data part of a received UDP packet. It is a synonym for udp.Get
(4)

Open

Open(Int port) Int

Allocates a receive buffer and enables the object as a UDP listener. A specific port number can
be given, or 0 which means accept packets with any destination port number.

The returned value is true or false: a false value means that new listener was not created because
a listener already exists with the same port number.

Put

Put(Int)

Appends a character or byte value to the object's transmit buffer.

Put(Array a [,Int start , Int size])

482UDProt

Copyright © 2009-2021 Venom Control Systems Ltd

a The array to append to the udp packet

start start position of array data (default 0)

size number of elements to transfer (default: to end of array)

Appends the contents of the array to the data in the UDP outgoing packet.

The array may be of any data type.

If start and size parameters are given, a subset of the array is copied.

 Note that the UDP object imposes an internal limit of 592 bytes for the user data.

If you create outgoing packets using 16 bit or 32 bit arrays, bear in mind that these
occupy 2 or 4 bytes per element respectively.

Send

Send(host, port [, myport])

Sends a packet containing the data assembled by Put and Print To
host is a host (domain) name or IP address to which to send the packet.
port is the destination port number.
myport, if specified, is the source port number. A value of zero is used by default, which
means the recipient is not expected to have any use for a source port number, i.e. will not be
replying.

Time

Time ([Int Force [, str server] Int

Force If true (non zero), force resynchronisation to a time server. You don't normally need
this as it's done automatically.

server This will set a time server to be used in future UDP Time messages, instead of the
default server list

Returns internet time as a Venom time value, which is the time in seconds since midnight GMT
on 1 January 1990. This is the same time base as used by the RealTimeClock object.

For this message to work, there must be an existing connection to the internet to set the internal

483 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

clock. Once the clock has been set successfully from an internet NTP (Network Time Protocol)
server, the time is estimated using Venom's internal millisecond timer. If more than about 10
hours has elapsed since the clock was last synchronised to the net, it is resynchronised if a
connection is currently available.

If there has never been a successful connection to a time server, a value of 0 is returned.

Four ntp servers are used by default. They are tried in succession until one returns a response,
so that the system is robust if any time server should fail, and so as to spread the load evenly
between servers. The servers used are:

0.uk.pool.ntp.org
1.uk.pool.ntp.org
2.uk.pool.ntp.org
3.uk.pool.ntp.org

You can choose a different server by specifying its domain name. This has to be done only once
when your program starts; the same server will then be used for all time synchronisation requests
instead of the defaults listed above. This is useful if your system is not running in the UK and you
want to use a closer NTP server, or is not connected to the internet but does have access to a
LAN with a local NTP server. For an international list of NTP servers, visit http://ntp.org
and look for public time server lists.

Use with RealTimeClock

The Real Time Clock in the VM2 can be synchronised to GMT using this service very simply:

...
Make rtc RealTimeClock
Make udp UDProt
...
rtc.Time := udp.Time

Queue

Queue Int

Returns 1 if a listener has received a UDP packet or 0 otherwise.

Note: there is only space for one packet in the receive buffer. Any packets that are sent while
there is a packet in the receive buffer are lost.

 Empty

http://ntp.org

484UDProt

Copyright © 2009-2021 Venom Control Systems Ltd

Print

 Print udp

Shows the number of bytes in a packet waiting for output, and the UDP object's listener state,
which is one of:

listening (no packet received)

not listening

listener has received data (shows how many bytes and where from)

PRINT TO

Print To <UDProt>, <print list>

The transmit buffer of a UDP object can be used as the destination of a Print operation.

When printing to a UDP object, CR sends an LF (ASCII 10) character to the buffer.

 PrintF

PPProt

PPP stands for Point to Point Protocol and is a widely used standard for encapsulation of
packets and link management on a serial line.

A PPP object makes a connection via serial line and modem or GPRS terminal, usually to an
internet service provider. The object handles all LCP and IPCP negotiation.

See also TCP/IP Networking

Features

CHAP or PAP authentication

IPCP negotiation to obtain dynamic IP address and DNS server addresses.

Host mode also available, where the VM2 emulates a modem and the "server" end of a dialup
connection.

Summary of Messages

485 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Close

Debug

Name

Open

Period

Reset

Timeout

Valid

Print

Print To

Code Example

Creation

Make <object> PPProt(serialobject)

The serialobject parameter is a SerialPort object previously created. PPP has been
extensively tested on serial port 2 but should work on any of the VM2's serial ports. The port is
usually expected to be connected to a modem or GPRS terminal.

Make <object> PPProt(serialobject, ip_address
my_address, ip_address remote_address)

serialobject The serial port on which to create the PPP object

my_address String or integer representing the VM2's IP address

remote_address String or integer representing IP address of remote end that connects
to VM2

This form creates a PPP object in Host Mode, enabling another VM2 to connect to it with a
normal PPP object and a serial interconnect cable.

It should also work with any host expecting a dialup modem connection. The VM2 emulates a
modem and PPP dialup connection.

At present, VM2 host mode does not require any authentication, so a user and password are
not defined.

IP addresses should be chosen which will not conflict with any other addresses used by the
connecting host, i.e. they should not be in the network address of any connected LAN.

486PPProt

Copyright © 2009-2021 Venom Control Systems Ltd

Configuring a Host for dialup connection to a VM2 in Host mode

If a phone number has to be specified, it can be anything.

No authentication is required, so no user name or password should be needed.

The VM2 responds to most "AT" modem commands with "OK"

It responds to any command starting "ATD" with "CONNECT"

The VM2 will allocate IP addresses for both ends of the link.

Close

Close

Disconnect.
Sends LCP terminate request, and then attempts to disconnect the modem by sending the
standard disconnect sequence:

<1 second pause> "+++" <1 second pause> "ATH0" <CR>

Off is a synonym for Close .

Count

Count(Int type) Int

This sets or returns one of four counter limits used in configuring the PPP link. These limits
prevent negotiation from continuing indefinitely without converging, i.e. the two ends cannot
agree on a mutually acceptable set of options.

If one of these values is exceeded during a PPP Open process, the open will fail.

For most purposes the default values will work, but in exceptional cases they may need
changing, and RFC1661 requires them to be configurable.

The types of count and default values are as follows:

Type Default
Value

Name Meaning

0 10 Max-Configure Maximum number of configure requests sent

1 5 Max-Fail Maximum Number of configure NAK or REJ sent

2 5 Max-Auth Maximum number of attempts to send authentication
data

3 2 Max-Term Maximum number of Terminate Requests sent

487 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Debug

Debug int

Enables (1) or disables (0) debug output during the connection phase.

The DEBUG option produces a trace, for a terminal connected to serial port 1, of the modem
control and LCP packet exchange, which may help when testing the connection to an ISP with a
modem or GPRS unit. Typical output will look like this:

user_dbg=1
ATZ
OK
AT+CGDCONT=1,"IP","orangeinternet"
OK
ATD*98*1#
waiting for CONNECT

CONNECT
user Orange secret
Tx:LCP:CONFREQ id=180 len=4
Rx:LCP:CONFREQ id=3 len=29 MRU=2000 ACCM=000a0000 PFC ACFC MAGIC=ac14e9f8 AUTH=CHAP
Tx:LCP:CONFREJ id=3 len=24 MRU=2000 ACCM=000a0000 PFC ACFC MAGIC=ac14e9f8
Rx:LCP:CONFACK id=180 len=4
Rx:LCP:CONFREQ id=5 len=9 AUTH=CHAP
Tx:LCP:CONFACK id=5 len=9 AUTH=CHAP
Rx:CHAP challenge id=1 len=25:
Tx:CHAP response id=1 len=27:
Rx:CHAP success id=1 len=4:
Tx:IPCP CONFREQ id145: [6]IPADDR=0.0.0.0

Mapping

Mapping(Int Map) Int

PPP allows all ASCII control characters to be mapped to a two-character escape sequence to
prevent confusion where local serial links use control characters for other purposes.

By default the Venom PPP object maps the characters XON (17 or Ctrl/Q) and XOFF (19 or
Ctrl/S) so that XON/XOFF flow control protocol can be used with the modem if desired.

The ppp Mapping message allows any selection of control character to be mapped to escape
sequences.

The Map parameter is a 32 bit integer where each bit is set to 1 where its bit number (numbering
from 0 for LSB to 31 for MSB) is the code for an ASCII control character to be mapped.

For example the default mapping value is $000a0000, where bits 17 and 19 are set,
corresponding to XON and XOFF respectively.

A value of $ffffffff would map all ASCII control chars to be escaped, which is the default

488PPProt

Copyright © 2009-2021 Venom Control Systems Ltd

for PPP if no option is negotiated to change it, but which adds about 12% overhead to the
number of bytes transferred because of the two-character escape sequences used.

A value of 0 would allow all control characters to pass though unchanged.

Note that reading ppp.Mapping after opening a connection may give a different value from
that set initially, because the remote end may negotiate for extra mappings.

It is almost always safe and efficient to leave this setting at its default value.

Name

Name(Str username, Str password)

This sets the user name and password for authentication.

Most PPP connections require authentication before use.

PPP can use either PAP (Password Authentication Protocol) or CHAP (Challenge Handshake
Authentication Protocol). The choice is negotiated automatically and you don't have to specify
which is used.

Client Mode

In the usual client mode of PPP, repeating this message will replace any previous user name and
password with new values.

Host Mode

In a ppp host, any number of username/password combinations my be set by using the name
message repeatedly.

The connecting client may identify itself with any of those user names, and must use the
corresponding password.

Name(Stringobj s)

In host mode, after a connection is open this form of the message will set s to the name of the
user that connected. This enables the host to select different behaviour or capabilities per user,
or to use the user name in connection with any data storage activity.

Note the list of users/passwords can be cleared by ppp.Reset

489 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Open

Open IP address or 0

Starts connection and returns IP address of negotiated connection if successful, zero if failed.

On and Go are synonyms for Open.

Commands defined by printing to the PPP object are sent to the modem.

The response from the modem is monitored for certain strings to speed up the response
time, and the timeouts depend on the command sent to the modem.

The strings "ERROR", "NO CARRIER", "NO DIALTONE" are recognised at any time and
result in immediate failure return.

The string "OK" is recognised and results in the next command being sent immediately.

If the command contains the string "ATD" there is a 60 second time limit waiting for a
response

All other commands have a 2 second time limit waiting for a response

After the modem has made a successful connection there are exchanges of LCP packets to
establish a valid connection to the internet:

1. LCP negotiation to establish that the VM2 performs no compression, and escapes all
ASCII control characters. At this stage the VM2 also finds out whether the remote end
prefers PAP (Password Authentication Protocol) or CHAP (the more secure Challenge
Handshake Authentication Protocol). The VM2 can use either.

2. Authentication: the chosen protocol is used, with the username and password, to
establish the VM2's identity

3. IPCP (Internet Protocol Control Protocol) determines the local and remote IP
addresses of the ends of the PPP link, and attempts to obtain primary and secondary
nameserver (DNS) addresses.

Period

Period Int

Returns and optionally sets the period in milliseconds of inactivity after which LCP ECHO
messages are sent.

Setting a value of 0 disables sending echo messages and checking for timeouts.

The default value is 0 (echo testing disabled)

490PPProt

Copyright © 2009-2021 Venom Control Systems Ltd

If this value is set non-zero, the PPP protocol will send an LCP echo request message when no
packet has been received for the period specified, and while no packets are received will send
more echo requests at time intervals of the same period. If no response is received after a
timeout period is exceeded, the link is assumed to be down and marked internally as dead,
requiring a new Open message to restart it. The default timeout period is 120 seconds, which
can be changed with the Timeout message.

Normally an echo request should cause an echo response to be sent back immediately from the
other end of the link.

The Period value should be set much smaller than the Timeout value so that several echo
requests can be sent before the link is declared dead. Typical figures might be:

Period Timeout no. of echo requests

10000 (10 sec) 60000 (1 min) 5

30000 (30 sec) 120000 (2 min) 4

 See also: Timeout

Timeout

Timeout Int

Timeout(0) Int

1. Returns and optionally sets the timeout period in milliseconds for opening the link. If the link
becomes physically disconnected this may be the only way to detect an Open failure.

2. If echo requests have been enabled by setting Period to a non-zero value, this value is also
the time after which the link is assumed dead if no packets have been received.

 Period description for hints on suitable values.

The default timeout value is 120000 (120 seconds).

Timeout(1) Int

Returns or sets the timeout period in milliseconds for retransmitting configuration requests during
LCP and IPCP negotiation when the connection is being opened.

The default value is 3000 (3 seconds) but some communications media may benefit from a
longer or shorter value, e.g. an Iridium satellite data link was found to negotiate more reliably
with the timeout set to 10 seconds.

 See Also: Period

491 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Valid

Valid Int

Returns True (1) or False (0) depending on whether the link is open and working.

A false value can mean any of the following:

Initial state, not connected

sent a Close message

received a TERMREQ packet from other end

Packet reception timeout, only if echo requests were enabled with the Period message

 see also: Close, Period, Timeout

Reset

Reset

Clears all text sent to the object by Print To ppp statements, and any stored user name
and password info.

The PPPprot object is in the same state as when initially created.

PRINT

Print <PPProt>

Lists all the text that was sent to the PPP object by Print, consisting of modem commands.

e.g.

-->Print ppp
AT&F0
AT&E0
ATD0555123456
-->

492PPProt

Copyright © 2009-2021 Venom Control Systems Ltd

PRINT TO

Print To <PPProt>, print list

All commands required for setting up a modem or GPRS terminal are defined by printing them to
the PPP object, where they are stored until an Open message is sent. Each command is
terminated by a new line (CR in the print list)

e.g.

Print to PPP, "AT&F0", CR, "ATD0555123456",CR

Code Example

; Program to demonstrate simple use of the PPP object

To init
 Make serial2 Serialport(115200, 2, 1)
 Make ppp PPProt(serial2)
End

To main
 ; this happens to use a dialup number for Plus Net
 ; the '9' is to dial out through a switchboard
 Print To ppp, "AT&F0M0", CR, "AT&D1", CR,
 "ATDT908451400103", CR
 ppp.Name("myusername", "mysecretpassword")
 repeat 3
 if ppp.Open
 break;
 if ppp.Valid
 [
 ; here you can put in some code
 ; that uses your internet connection
 ;
]
 else
 Print "unable to open PPP connection", CR
End

493 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

TCProt

A raw TCP object type is available to enable the Venom programmer to implement proprietary
or existing application protocols that use a TCP link.

A TCP connection can be viewed as a bidirectional conduit for reliably transmitting and receiving
streams of bytes of any length. Any loss or corruption of data results in retransmission, so that
while data integrity is guaranteed, timing is not.

See also TCP/IP Networking

Summary of messages

Make

Close

Debug

Flush

Free

Get

Open

Put

Queue

Reset

Status

Timeout

Print To

Creation

Make x TCProt([Int txbufsize [, Int rxbufsize]])

txbufsize : transmit buffer size, default 2048
rxbufsize : receive buffer size, default 2048

Creates a TCP object, allocating memory for this and the transmit and receive buffers.

Buffer Sizes

Minimum 1024

Default 2048

Maximum 32768

The buffer sizes are optional. They should be specified as an exact power of 2. If not, they will
be increased to the nearest next power of 2, e.g. specifying 5000 will allocate 8192 bytes.

494TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

Increasing these sizes can improve performance, especially if there is much delay in the physical
link, but uses memory.

Example

Make eth Ethernet ; Create a connection for TCP to use.
Make tcp TCProt
Make s string(200)
If tcp.Open("www.venomcontrolsystems.co.uk", 80)
[
 Print To tcp, "GET /test.html HTTP/1.1",CR,
 "host: www.venomcontrolsystems.co.uk",CR, CR
 tcp.Flush ; send our request string without delay
 while tcp.get(s) > 0
 print s, CR
]

Close

Close

Closes an existing connection made by the object. The TCP attempts to go through the usual
sequence to close a connection. Note that closing a connection in TCP means that there is no
more data to send. The connection may remain open in the receiving direction and continue to
receive data. It is up to the remote end to initiate a close when it has no more data to send. See
also Reset.

Debug

Debug(0) File or 0
Debug(1) File or 0

If you have file system, you can use it for logging information to help with debugging a TCP
connection.

To enable logging, you should open a text file (type char in the filesystem Open message) and
assign the file variable to tcp.Debug(0) or tcp.Debug(1).

Management of files, including closing files, flushing the file system or emptying an old log file
before use, is entirely up to the Venom programmer. By default, logging data is simply appended
to the file after any data that previously existed.

It is legitimate to associate the same file with more than one tcp connection. Each connection
created is given a numeric ID to help distinguish tcp connections logged in the same file.

495 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Debug(0) Controls logging of all TCP packets, one per line in a compact format.

Debug(1) Controls logging of significant TCP events. Entries are created when
connections are opened and closed, and for all exceptions such as resets or timeouts

A value of 0 stops logging.

If you are having trouble with a TCP connection during program development, this feature may
help you to understand what is going on, or if you send the logged results to us it may help us to
provide technical support.

Example

This sends an HTTP request for a small test file on our web site. If you run this on a VM2
connected to LAN with internet access this should work unchanged.

To init
 make fs Filesystem("ram", 100 * 1024)
 Make eth Ethernet
 make tcp TCProt
 f := fs.open("tcp.log", char) ; open log file
 f.empty ; fresh log each run
 tcp.Debug(0) := f ; Tell TCP to log packets
End

To main
 ; send a message to some device on the network that will send a
 ; response back and then close the connection
 if tcp.Open("www.venomcontrolsystems.co.uk", 80)
 [
 tcp.printf(<<<:
GET /test.html HTTP/1.1
Host: www.venomcontrolsystems.co.uk
Connection: Close

>>>)
 tcp.Flush ; don't wait 1/2 second for more data
 tcp.close
 printf("response:\n")
 while tcp.queue >= 0 ; print response until TCP closed
 repeat tcp.queue
 serial.put(tcp.get)
 printf("\n=====\n")
]
 else
 printf("TCP open failed\n")

496TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

 printf("Packet log:\n")
 print f
 f.close
End

If the program runs successfully the terminal output will look like this:

-->Run

response:
HTTP/1.1 200 OK
Date: Tue, 07 May 2019 11:00:49 GMT
Server: Apache
Vary: Accept-Encoding
Content-Length: 75
Connection: close
Content-Type: text/html; charset=UTF-8

<!DOCTYPE html>
<html><head></head><body>test.html web 2016</body></html>

=====
Packet log:
 0.000 1 25653->80 s:4f00-4f01(1) a:0000 w:2047 SYN
 0.029 1 25653<-80 a:4f01 s:781a-781a (0) w:29200 SYN ACK
 0.029 1 25653->80 s:4f01-4f01(0) a:781b w:2047 ACK
 0.033 1 25653->80 s:4f01-4f54(83) a:781b w:2047 ACK PSH
 0.061 1 25653<-80 a:4f54 s:781b-781b (0) w:29200 ACK
 0.062 1 25653->80 s:4f54-4f54(0) a:781b w:2047 ACK FIN
 0.065 1 25653<-80 a:4f54 s:781b-7914 (249) w:29200 ACK PSH
 0.065 1 25653<-80 a:4f54 s:7914-7914 (0) w:29200 ACK FIN
 0.066 1 25653->80 s:4f55-4f55(0) a:7915 w:1797 ACK
 0.090 1 25653<-80 a:4f55 s:7915-7915 (0) w:29200 ACK
-->

Die

Die

If the Die message is sent to a TCP object, the memory used by it is freed and any open
connection will be aborted.

If a TCP object is created as a local variable in a Venom procedure or function, it must be sent a
Die message before the function exits, or there will be a memory leak and problems with the
existing connection persisting.

The Die message could be useful to reclaim the memory used by TCP object no longer in use, or
to change the buffer sizes between one connection and another.

497 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Flush

Flush

Forces any locally buffered data to be sent and waits for it to be acknowledged. The packets
are sent with the TCP PSH (Push function) flag set. This is intended for interactive use, where a
response is expected from the other end once all the current data has been sent. The intended
function of the PSH flag is to force the TCP object to send data immediately when it might
otherwise have refrained from doing so because the resulting data segment would be small.

Example

Make eth Ethernet ; Create a connection for TCP to use.
Make tcp TCProt
Make s string(200)
If tcp.Open("www.venomcontrolsystems.co.uk", 80)
[
 Print To tcp, "GET /test.html HTTP/1.1",CR,
 "host: www.venomcontrolsystems.co.uk",CR, CR
 tcp.Flush ; send our request string without delay
 while tcp.get(s) > 0
 print s, CR
]

Free

Free Int

Returns the free space in the transmit buffer.
If Free returns a negative value it means the connection is closed or was never opened.

Get

The Get message reads characters or data bytes from a TCP object. There are three forms of
the Get message:

single byte read

string read

array read

Single byte

Get Int

Gets a single character or byte from the incoming data stream.

498TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

If the connection is open but there is no data, the TCP object will wait indefinitely for data to
arrive or until the timeout limit has been reached, if a timeout was set.
With no parameter, the data is normally a byte value in the range 0 to 255.
A returned value of -1 means there is no connection e.g. it has been closed or reset.
A returned value of -2 means the timeout expired.

Example:

Receiving bytes until connection closes

While tcp.queue > 0
[
 c := tcp.get
 if c >= 0
 process_received_byte(tcp.get)
 else if c = -1
 Print "connection closed",CR
 else
 Print "timed out", CR
]

String

Get(stringobj s) Int

Reads a line of input terminated by CRLF from the TCP incoming data stream into the string
object specified in the parameter.

The LF character is detected as the end of line marker, but neither CR nor LF is included in the
returned string.

Transfer also stops if the capacity of the string object is reached first.

The returned value is the length of the received string if positive or zero. A negative retuned value
indicates a closed connection or timeout.

Example:

Receiving lines of text until connection closes

Make s string(200)
While tcp.get(s) >= 0
 process_received_line(s)

Array

Get(arrayobj a, Int nBytes) Int

Reads bytes from the TCP connection into an Int 8 Array, specified in the first parameter.

The number of bytes to read is indicated by nBytes. If nBytes is larger than the array then an

499 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Array Index error is thrown.

Get returns the number of bytes read, or -1 for a closed connection, or -2 if there is a timeout.

Example:

; In the init procedure:
Make dataArray Array(Int 8, 100, 0) ; 100-byte array to store incoming TCP data.

; In the main code:
returnCode := tcp.Get(dataArray, 50) ; Read 50 bytes into the array.
if returnCode >= 0
[
 process(dataArray)
]
else
[
 ;...
]

Open

There are different forms of the Open message, for different purposes.

Active Open

Open(host, Int port) Int

host : Integer, string or text buffer representing the remote domain name or IP address to
connect to
port : Integer representing remote port number to connect to.

Opens an active connection (i.e. the VM2 initiates a connection) to an address and port number
on the net. Returns when established.

The return value is True (1) if the connection was made successfully, or False (zero) if it failed.

Passive Open

Open(Int Port)

port is an integer port number.

When one parameter is specified, Open sets up the TCP object as a passive listener. The
message returns immediately and the object continues to wait for an incoming connection.
A passive Open message does not return a value.

500TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

A run time error may result if the TCP object is in an incompatible state, e.g. if it already has a
connection open, or the port number is invalid.

Test for Open Connection

Open Int

Return value:

-1 if closed/unused

 0 if listening

IP address when connected

With no parameters, the Open message is used as a test to find out whether a connection is
open. After a passive open message has been sent, this will tell if an incoming connection has
been received.
Always returns immediately with value according to state.

Example 1 - Active Opening

If tcp.open("192.168.1.23", 123)
[
 ; send and receive data over TCP connection
]
Else
 Print "connection failed"

Example 2 - Passive Listener

tcp.open(123) ; listen on port 123
Forever
 If tcp.open
 [
 ; handle incoming connection
]
 Else
 [
 ; do something else
]

501 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Put

Put(Int)
Put(string)
Put(buffer)
Put(array a[, Int size])

Puts a byte, fixed string or entire buffer or array contents into the outgoing data stream.

The buffer or array can be of any integer or float data type. 16 or 32 bit integers and floats are
sent as stored internally in Venom 2, least significant byte first. Using arrays or buffers gives fast
data transfer rates. Note that sending 16 or 32 bit integers and float data this way is only useful if
you know that the receiving system stores these values in the same way in memory.

"Buffer of Any" and arrays of strings are not currently supported, but you can Print an array of
strings to TCP.

For arrays, an optional second parameter limits the size of data sent to TCP. The data is always
sent from the beginning of the array.

Queue

Queue int

Return the number of bytes received and unread.
If Queue returns a negative value, it means the connection has been closed or reset. Note that
when a receiving connection has been closed, Queue will continue to show a positive value while
there is still unread data in the buffer, but will return negative once the last byte has been read.

Reset

Reset

The Reset message forces a TCP object immediately into the closed state. Any packet received
from the other end of a prior open connection with that TCP object will be rejected with a TCP
RST (reset) packet.
All unread data in the receive buffer or untransmitted data in the transmit buffer is lost. The
object can then be reopened for a new connection.

502TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

Status

Status

Status Int

The value returned has the following meanings:

0 Normal connection.

1 Host unreachable – it was impossible to route packets to the remote destination.

2 Timeout when sending – no acknowledgement received after several retransmissions of
the same data.

3 Connection attempt was refused.

4 DNS lookup failure when opening an active connection to a host specified by name.

5 TCP connection closed normally

This provides more information when the return value from a queue, Free or Get message
indicates that the connection is closed.

Note that a value of 5 is returned any time after the remote end has initiated a close, but does not
necessarily mean that the connection is fully closed. See tcp.Valid for a more detailed check on
half-closed states.

Timeout

Timeout Int

Set a timeout value in milliseconds for the Get message. A value of 0 disables the timeout, which
is the state when the TCP object is created.

This message also sets a maximum limit for acknowledgement timeouts when sending data. By
default there can be a delay of over 3 minutes before a link is dropped because of lack of
response. In some cases, like a local area network, it is reasonable to assume that lack of
response within a few seconds indicates a non-responsive host; setting a lower timeout discovers
this condition faster.

Valid

Valid Int

This returns a bitmapped value with the following bit meanings:

Bit 0
(1)

1 = TCP connection is open for receiving data, 0 = other end has closed connection

Bit 1 1 = TCP connection is open for sending data, 0 = this end has closed connection

503 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

(2)

Explanation

When a TCP connection is first opened, data can be sent in either direction.

When one end closes the connection, it can no longer send data, but it can still receive data sent
from the other end, and the connection is not fully closed until both ends have requested a TCP
close.

This message provides a convenient means to determine that a connection is fully closed in case
you want to open a new connection with the TCP object. This condition is met only when tcp.
Valid = 0 and is exactly equivalent to tcp.Queue and tcp.Free both returning -1.

Example 1

Determine when other end has closed connection

tcp.Open("example.com", 80)
... ; send data, receive data
tcp.Close

While tcp.Valid ; wait for other end to close connection
 Wait 1

tcp.Open("example2.com", 80) ; we may now open a new connection

Example 2

Determine when listening connection has opened

tcp.Open(123) ; listen on Port 123

while tcp.Valid = 0 ; wait for incoming connection
 wait 1

... ; incoming connection

See also tcp.Open and tcp.Status

PRINT TO

Print To TCP object

The Print statement can be used to print anything to a TCP object as if the TCP object was
a text buffer or serial port. The Keyword CR results in the sequence CR LF (13, 10) being sent
to the TCP data stream, which is usually the correct line ending sequence in text-based protocols
over TCP, such as SMTP, POP3 and HTTP.

Other Print keywords are not recognised and should be avoided.

504TCProt

Copyright © 2009-2021 Venom Control Systems Ltd

 PrintF

Timer

Timer objects are software countdown timers. Once started, a Timer object ‘runs’ for a given
number of milliseconds, and then stops.

Summary of messages

Make

Done

Go

Period

Reset

Time

Print

Creation

Make <object> Timer (Int period)

A new timer object is created. Once the timer is started it will ‘run’ for period milliseconds
before stopping. A timer is created in the stopped state.

For example:

Make tmr Timer(100000) ; a 100 second timer

The maximum value the period may be set to is the largest positive integer (~2billion),
which is equivalent to ~24 days.

See also Stopwatch, RealTimeClock; Wait, Every

You can make as many timer objects as you require. Each one will take a small amount
of memory.

Done

Done Int

Done returns True if the timer has stopped, and False if the Timer is running.

505 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Go

Go

Starts the timer, effectively loading Period into Time.

See also Period, Time

Period

Period Int

Period holds the millisecond value that gets loaded into Time when the timer is started with Go,
etc.

Period is an active variable.

The maximum value Period may be set to is the largest integer (~2billion), which is
equivalent to ~25 days.

All timing is done in milliseconds. The accuracy of the timing depends on the
controller's crystal oscillator. See the VM2 Datasheet.

See also Creation, Time, Go, Printing

Reset

Reset

Reset immediately stops the timer, reducing Time to 0, and Done becomes True.

See also Creation, Go, Time

Time

Time Int

Time is an active variable holding the countdown time: the time left before the timer stops. Time
may be set – this allows you to alter the period before the timer stops. If the timer has stopped
then setting Time non-zero will start it.

The maximum value Time may be set to is the largest integer (~2billion), which is
equivalent to ~25 days.

All timing is done in milliseconds. The accuracy of the timing depends on the VM2's
crystal oscillator. See the VM2 Datasheet.

See also Creation, Period, Go, Printing

506Timer

Copyright © 2009-2021 Venom Control Systems Ltd

Printing

Print <Timer> : Int f1
Print <Timer> : Int f1 : Int dp
Print <Timer> : Int f1 : Int dp : Int select

Prints the time or the period of the timer in different formats. f1 gives the major format style to
use:

f1 Format

:0 DD:HH:MM:SS.sss

:1 HH:MM:SS.sss

:2 MM:SS.sss

:3 SS.sss

Key

D is a day digit (0-24)

H is an hours digit (0-23)

M is a minutes digit (0-59)

S is a seconds digit (0-59)

s is a fraction of a second digit,
specified by the second formatting
parameter dp.

dp gives the number of decimal places to print the seconds value to. If dp is zero then no
decimal point or fractional digits are printed.

select chooses whether the time printed should be the Time or the Period. If select is missing
or zero, then the Time is printed, if select is 1 then the Period is printed.

Tip: if you want to print out any number in the format used by Stopwatch or Timer, you
can create a Timer object, set its Period to the value you want to print, and then print it,
remembering to specify printing the Period.

dp has a maximum value of 3.

If no format is supplied the Timer is printed in the form: [Timer: Period : Time].

507 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

TouchScreen

The TouchScreen object interfaces to a TSC2003 Touchscreen Controller IC via the I2C Bus.
The IC may be used to detect the position of a finger or stylus touching a resistive touchscreen.

Normally a touchscreen is placed in front of a graphics LCD, functioning as the input device in a
Graphical User Interface. The TouchScreen object is able to convert the touch position on the
screen into the coordinates used on the Graphics LCD.

Normally a graphical user interface (GUI) built around the Touchscreen object will make
extensive use of the Button sub-object.

Please see the Code Snippets pages on our website for examples of how to use the
Touchscreen and Button objects.

This object requires a TSC2003 IC to be present on the I2C Bus.

See also GraphicsLCD.

Summary of messages

Make

Adjust

Asserted

Button - create

Button - get

Count

Event

Key

Mapping

Remove

Time

Timeout

Value

XPos

YPos

Creation

Make <object> TouchScreen(Int type, Int Bus, Int I2C_addr)

Type gives the type of touchscreen hardware to be driven. Only type 0, the TSC2003, is
currently supported.

Bus is the number of the I2C Bus: Must have the value 1 currently.

508TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

I2C_addr is the address of the TSC2003 on the I2C Bus and must be in the range 144-150
(even numbers).

The 'Venom' I2C address is obtained by doubling the 7-bit address usually given in a
device datasheet.

A touchscreen object will normally be used in conjunction with a GraphicsLCD object.

Example

Make t Touchscreen(0, 1, 144)

Adjust

Adjust(Int ReadWrite, GraphicsLCD lcd, SafeData safe,
Int address) Int

Adjust is used to calibrate the touchscreen. There are two different forms of the message,
depending on the value of the ReadWrite parameter:

Read
Write

Action

0 Read calibration data out of a SafeData object, use it to calibrate the Touchscreen,
and return a non-zero value if the calibration data was correctly validated by a
checksum.

1 Perform a calibration, and write the calibration data into a SafeData object along with
a checksum to validate it.

The other parameters are:

lcd: the GraphicsLCD device associated with the Touchscreen.

safe: the SafeData object to store the calibration data in. The calibration data takes 12 bytes
(six 16-bit values, including the checksum)

address: the address (within the SafeData object) of the start of the calibration data .

Adjust will draw crosses on the LCD for the operator to touch in order to calculate the
calibration data, and will over-write each cross with a square box once a sufficiently long touch
is detected.

The crosses and boxes are drawn in the LCD's current foreground and background colours.

509 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Example code

This will calibrate a touchscreen if the checksum for the stored calibration data isn't valid, or if
the operator is touching the screen when this procedure is called.

Make lcd GraphicsLCD(1)
Make touch TouchScreen(0,1,144)
Make eeprom SafeData (1,1,162)
...
To calibrate
 ; Do we need to recalibrate?
 If touch.Asserted ; If operator touching screen...
 OrElse touch.Adjust(0, lcd, eeprom, 0) IsFalse ; ...Or Stored data corrupt.
 [
 Print To lcd, FONT 1, CLS, "Touchscreen calibration. Touch the crosses."
 touch.Adjust(1, lcd, eeprom, 0)
 Print To lcd, CLS, "Calibration Done"
 Wait 500
]
End

Asserted

Asserted Int

Asserted returns True if the touchscreen is being touched.

When Asserted detects a touch it records the X,Y coordinates of the touch so that they may be
read out using XPos and YPos.

Button - create

Creating buttons

Button
(
 Int Key, String Name,
 Int XPos, Int YPos, Int Width, Int Height,
 [Pointer Draw, [Int Active, [Any Element(0), ...]]]
) Button

Buttons are created by sending a Button message to a Touchscreen with at least six parameters.
There are also two optional parameters of defined type, and then an unlimited number of

510TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

optional parameters of any type.

Note: when using the user-class based GUI Library, Buttons are only used to associated a
GUI object with an active area on the touchscreen (defined by the Button's rectangular
extent). Only the parameters XPos, YPos, Width, Height and Element are used.

 Currently there is a limit of 64 buttons, but this will be removed later if it proves too
restrictive.

Parameters

Name Type Description

Key Int The 'Key value' for the Button. It is usually used by your program to
determine what action to take when the button is pressed.

Deciding exactly what the Key value is to represent is often the central
decision to be made when designing a complex menu page.

Name Stri
ng

Button name. Usually used to add a text label to the button when it is drawn.

Xpos Int Position of the left hand edge of the Button

YPos Int Position of the bottom edge of the Button

Width Int Width of the Button

Height Int Height of the Button

Note: the coordinates and size of the Button are in Touchscreen coordinates, which are
the pixel coordinates of the underlying GraphicsLCD if the Touchscreen has been
calibrated.

Optional parameters

Draw Poin
ter

Procedure pointer to Venom procedure that 'knows' how to draw this button.
Different 'types' of button may be implemented by using different Draw
procedures for each type, so giving a different drawn appearance and
behaviour for each type.

Active Int This is usually used to signal to your code whether a button is 'active' or not.
Usually, inactive buttons are drawn differently, and don't respond to touches,
but behaviour is determined by your Venom code.

Eleme Any This is an unlimited set of extra values that are stored in the Button, and that

511 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

nt(n) you can use in any way you wish.

Note that any of the Button parameters may be accessed by sending a message of the same
name to the Button object.

Return value

The Button message returns a Button object. It's not often necessary to use this value.

Example

ts.Button(5,"OK", 10, 10, 50, 30, @draw_normal_button)
ts.Button(4,"Cancel", 10, 70, 50, 30, @draw_normal_button)

The code above will create two button objects, giving them names, as in the quoted strings, and
key numbers 5 and 4, followed by the XY positions and extent (width and height) of each
button, and then a pointer to the procedure which is to draw the buttons. Simple menus are built
up from a list of buttons created like this.

More complex menus may use Venom code to automatically generate lists of buttons.

Sometimes it's useful to keep a reference to the Button object created; this example shows you
one way to do that:

OK_button := ts.Button(5,"OK", 10, 10, 50, 30, @draw_normal_button)

Also see Button - get and Find.

Removing buttons

To remove all the buttons from a Touchscreen, use the Remove message.

Button - get

Getting the Button associated with an event

Button events are sensed by regularly sending the Event message to a Touchscreen. If the Event
message returns with an event code (E.g. Button Down), then the button associated with that
event may be retrieved by sending the Button message with no parameters:

Button Button

For example:

button_obj := ts.Button

Getting a Button using its index

You can get any Button object by accessing the list held by the Touchscreen object. You have

512TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

to use the button's 'index' to specify which button you want. The index is given by the value of
Count just before the button is created, or Count-1 just after the button was created, or may be
calculated in some other way, since the index number increments from zero.

Button(Int index) Button

For example:

button_obj := ts.Button(0)
This gets button number 0 - the first button created, since buttons are numbered from 0.

 Note: a button's index is not the same as it's 'Key value'. If you want to find a Button given
it's Key value then use Find.

Count

Count Int

Returns the number of Button objects currently held by the Touchscreen.

 Remove

Event

Event Int

The event message is used to scan the Touchscreen and report any Button activity detected.

The table shows the events that may occur, and the values associated with them.

No Event 0

Button Down 1

Button Up 2

Scan order

Buttons are scanned in reverse order : last created, first scanned. If Buttons overlap then the

513 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

first one that contains the coordinates of the touch point is returned.

To find the button that caused the event, call the Button message.

Example

touch_event := touch.Event

Find

Not needed when using user-class based GUI Library.

Find(Int Key_value) Button

Find will look for the first Button with the given Key value and return it.

The Key value is the value of the first parameter supplied when the Button was created.

If no Button with a matching Key value is found then Find returns Nil.

Note: Find is different to getting a Button using it's 'index' number.

 If there is more than one Button with a matching Key value (not recommended) then only
the first match will be found.

Key

This feature is no longer recommended for new designs.

Key (Int x1, Int y1, Int dx, Int dy)

Key

The Key message allows an unlimited number of ‘virtual keys’ to be defined on the touchscreen.

Each key is a rectangle defined by the coordinate (x1, y1) & the sizes dx and dy - these are the
same values that are used to define a Box or TextBox.

Note that dx and dy may be negative.

Each time the Key message is called with four parameters, a new key is added. The keys are
numbered from zero upwards in order of creation.

In this example four keys are created. We also draw button graphics on the the display, g, and

514TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

label the buttons 0 to 3.

 See also TextBox.

#define KEYBD_X 10
#define KEYBD_Y 10
#define KEYSIZE 20
#define KEYSPACING 25

To keys
 Local x:=KEYBD_X, y:=KEYBD_Y

 t.Key ;reset the key list.
 Repeat 4
 [
 g.TextBox(x , y , KEYSIZE , KEYSIZE , $100)
 Print To g, FONT 0, Centre, Index0
 t.Key(x , y , x+KEYSIZE , y+KEYSIZE)
 x := x + KEYSPACING
]
End

Scan order

When keys are scanned (using the Keypad object), the scan is done in reverse numerical order
starting with the last key to be defined. A touch position is compared with each key in turn, and
the first key to match is returned. This is important to consider if you define keys with
overlapping areas. It can be useful to define overlapping keys. For example you may want the
background to be a default ‘key’ that is detected if no others are.

Removing keys

If you call the Key message with no parameters then all the keys are discarded, and new ones
may be defined if desired.

 t.Key ;reset the key list.

Using the Keys

To use the keys as a keypad, create a keypad based on the touchscreen like this:

Make t TouchScreen (0, 1, 144)
Make kpd Keypad (t)

Then use the Keypad object in the normal way to detect key presses, etc.

Usage Note: If you redefine a TouchScreen virtual keypad when, say, moving from menu

515 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

to menu, you should be aware of how the Get message for Keypad’s InputBuffer
functionality will behave, as it is currently implemented: when the old set of keys is
removed from the TouchScreen object, but before the new set has been defined, the
InputBuffer may detect no key being pressed. If the operator is still pressing the touch
screen when the new keypad is defined, this will be interpreted as a new key press. One
solution is to not the change the virtual keys until the operator has stopped touching the
screen.

X Y coordinates

When the touch screen is used as a virtual keypad, the X and Y coordinates are available, using
the Value message, for each touch of a key so you can determine exactly where the touch was
made.

See also Keypad

Mapping

This feature is no longer recommended for new designs.
Please see Adjust.

In each individual touchscreen assembly the touchscreen system has to be calibrated so that the
X, Y coordinates it returns coincide with the screen coordinates of the graphics LCD. This
calibration is handled automatically by the Mapping message.

The Mapping message has two different forms:

1. The first form is used to set up the calibration.

2. The second form allows the four calibration constants to be read out of, or written into,
the TouchScreen object. The calibration data can in this way be stored for repeated use
so the actual calibration need only be done once.

Initial Calibration

This form of the message is used to calibrate the touchscreen object:

Mapping (Int phase, Int xpixel, Int ypixel)

The basic procedure to calibrate the TouchScreen object is:

1. Draw a cross near the bottom left corner of the LCD, at position (X1, Y1).

2. Send TouchScreen the message Mapping (1, X1, Y1) – i.e. using the same
coordinates as the cross. The Mapping message will wait for a touch.

3. The user should touch the cross accurately

516TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

4. Sound a beeper, or otherwise let the user know the touch was detected.

5. Draw a 2nd cross near the top right corner of the LCD, at position (X2, Y2).

6. Send TouchScreen the message Mapping (2, X2, Y2)

7. The user should touch the 2nd cross accurately

8. The calibration constants are calculated and stored by the object. All subsequent
readings of the touch position will be calibrated to screen coordinates.

9. The four values that represent the calibration may be accessed, using the second form of
the Mapping message (discussed below), and preserved in non-volatile storage.

10. Sound a beeper, or otherwise let the user know the touch was detected.

Example code appears at the end of this page.

Reading and Writing calibration data

obj . Mapping (Int index) Int

When sent with one parameter, the Mapping message reads or writes the calibration constants.
There are four constants (index is in the range 0 – 3), and each constant is a two-byte (16-bit)
number.

The constants represent X-offset, Y-offset, X-scale, Y-scale.

When the Touchscreen object is first created these constants are given default values that result
in the touchscreen reporting touches as the raw output values from it's 12-bit ADC - i.e. values
in the range 0 - 4095.

Storing a Calibration

The four calibration constants may be stored in, and subsequently retrieved from, non-volatile
storage, making it unnecessary to perform a calibration every time the system is turned on.

Example code

;==== Touch screen calibration code =========
;
;Calibrate the touch screen and store the calibration data in EEPROM,
; or read a previous calibration out of EEPROM.
;This procedure shoujld be called at the start of the Main procedure.
;Remember to turn the backlight on first!
;
;
; Parameters:
;=============
; recalibrate - if True then force a calibration. If false then check to see if

517 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

; a calibration is necessary.
; touch - the Touchscreen object
; lcd - the GraphicsLCD object
; lcd_width - the pixel width of the LCD
; lcd_height - the pixel height of the LCD
; sounder - a sounder object that takes messages ON and OFF. Use Nil if no sounder object.
; safe - a Safedata object - to store calibration data.
; safe_addr - the byte address within 'safe' to start the calibration data.
;
; Data storage.
; This uses 5 x 16-bit values: 10 bytes in the SafeData object.

To calibrate_touchscreen(recalibrate, touch, lcd, lcd_width, lcd_height, sounder, safe, safe_addr)

 ; Define the crosses drawn on the screen.
 #Define CAL_INSET 20
 #Define CAL_CROSSSZ 10

 safe.Address := safe_addr ; Reset the SafeData store.

 ;Check to see if a calibration data is missing or corrupted, or if we want to recalibrate.
 ;(If calibration data is OK then just load it into the Touchscreen object and return).
 If recalibrate IsFalse AndAlso safe.Checksum(safe_addr, safe_addr+8) = safe.(safe_addr+8,16)
 [
 Repeat 4
 touch.Mapping(Index0) := safe.Get(16)
 Return True
]

 ;Set up pen colour
 lcd.Pen(0) := 0 ; black

 lcd.TextBox ; reset textbox to whole screen

 ;Print a message to the lcd device.
 Print To lcd
 , FONT 1,CLS,"Touch screen calibration"
 , FONT 0, CR, "Touch each cross accurately"

 cal_draw_cross(lcd, CAL_INSET,CAL_INSET);Draw the first '+' - the point to touch.
 lcd.Update ; Update the lcd - this may be redundant.
 touch.Mapping(1, CAL_INSET,CAL_INSET) ; Initiate phase 1 of calibration process.
 sounder.On Wait 100 sounder.Off ; beep to say it's done.

 cal_draw_cross(lcd, lcd_width-CAL_INSET,lcd_height-CAL_INSET) ;Draw the second '+'

518TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

 lcd.Update ; Update the lcd - this may be redundant.
 touch.Mapping(2, lcd_width-CAL_INSET,lcd_height-CAL_INSET) ; Initiate phase 2 of calibration process.
 sounder.On Wait 100 sounder.Off ; beep to say it's done.

 ;Store the calibration data in the SafeData object.
 Repeat 4
 [
 safe.Put(touch.Mapping(Index0),16)
]
 safe.Put(safe.Checksum(safe_addr, safe_addr+8),16) ; Set a checksum.

 Print To lcd, FONT 1, CLS, "Calibration Done"
 lcd.Update ; Update the lcd - this may be redundant.
 Wait 1000 ; wait so message above is visbile - this may be redundant.
End

;Draw a cross on the lcd, centred on (x,y)
To cal_draw_cross(lcd,x,y)
 lcd.Line(x-CAL_CROSSSZ,y, x+CAL_CROSSSZ, y)
 lcd.Line(x,y-CAL_CROSSSZ, x, y+CAL_CROSSSZ)
End

;==== End Touch screen calibration code =========

See also SafeData

Remove

Remove

Remove removes all Buttons from the Touchscreen allowing a new set to be redefined. This is
usually when you want to create a new menu page.

touch.Remove
touch.Button(5, "OK", ...)
touch.Button(9, "Cancel", ...)
...

Re-create buttons in the same menu

Remove(Int continuous)

If the optional continuous parameter is non-zero then Remove allows the last button press to

519 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

be carried though from the old set of Buttons to the new set.

This means that a new button that contains the position of the last touch event will be set to
Asserted.

This is useful when you have a menu page that needs to re-create all its Buttons when one of its
buttons is pressed, and where you will usually want to draw the newly created buttons as if the
button that was pressed is still pressed.

touch.Remove(True)

Time

Time Int

Time(Int ind) Int

Time returns the time (in mS) since the last 'real' (i.e. not an auto-repeat) Button Down event.

 t := touch.Time

Alternatively, if you give it a parameter of value 1, it will return the number of auto-repetitions
(including the initial touch) since the initial touch.

 n := touch.Time(1)

Both of these may be useful when designing the auto-repeat behaviour of a menu.

Timeout

Timeout(Int delay, Int period)

Timeout is used to implement an 'Auto-repeat' function for touchscreen buttons. If a Button is
held down for longer than delay mS, then Event will be forced to return Button Down even
though the Button has not been released and re-touched. If the Button remains held down then
further Button Down events will be forced every period mS.

You can implement different auto-repeat behaviour for each button on a menu page by choosing
whether to send the Timeout message, or what values of delay and period to use.

520TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

Example

The following code was extracted from some QWERTY keyboard menu code. Notice the
different auto-repeat behaviour for the Delete, Shift and Letter buttons.

Select Case key_value
Case -1 [] ; no key, no action.
Case 0 ;OK key
[
 Return 0
]
Case 1 ;delete key
[
 delete_character
 touch.TimeOut(400,100) ; Delete auto-repeat
]
Case 2 ; shift key
[
 do_shift
 ; No auto-repeat
]
Case Else ; Letter keys.
[
 process_letter(key_value)
 touch.TimeOut(400,200) ; Typing auto-repeat
]

More details

If you set delay to zero then auto-repetition will not start.

If you set period to zero (0) then auto-repetition will not continue.

If you don't call Timeout then auto-repetition will not start (or continue).

The Time message may be useful when implementing more sophisticated auto-repeat behaviour.

Value

Value Int

The value message is associated with the sensitivity of the Touchscreen.

When read, Value returns a number that gives some kind of indication of the pressure of

521 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

a touch. Because this value has not been processed, and is dependent on the XY
position of the touch, this is not very useful other than to aid in setting Value, as below.

When set, Value sets the minimum value of touch 'pressure' that the touchscreen object
will register as a touch. This value may be increased to reduce the sensitivity of the
touchscreen. If it is increased too much it will start to limit the area of the screen that will
detect touches. The default value is around 5

Example

ts.Value := 10

XPos

XPos Int

Returns the X ordinate of a touch. This will be in Graphics LCD coordinates if the touchscreen
is calibrated to the graphics LCD.

The X and Y coordinates are set each time either Asserted or Event detects a touch on the
touchscreen.

This example draws a line to each new touch on the screen:

To lines
 Every 50
 [
 If t.Asserted
 [
 w.Line(t.XPos, t.YPos)
 g.Update ; update GraphicsLCD object
]
]
End

YPos

YPos Int

Returns the Y ordinate of a touch. This will be in Graphics LCD coordinates if the touchscreen
is calibrated to the graphics LCD.

The X and Y coordinates are set each time either Asserted or Event detects a touch on the
touchscreen.

522TouchScreen

Copyright © 2009-2021 Venom Control Systems Ltd

See here for example code.

TouchScreen: Button

Use with user-class based GUI library

Note: Since the introduction of the user Class-based GUI library, much of the functionality of
the Touchscreen:Button object has become redundant.

The GUI Library still uses the Touchscreen:Button object, but only uses part of its
capability: to define rectangular 'active' areas on the display, and to associate these active areas
with user-defined objects in the GUI system. The only message used is Element.

Easiest to start with template code

Because of the relative complexity of GUI systems, it's probably easiest to adapt an existing GUI
template project rather than start writing code from scratch. Please see the Code snippets page
on our website for template code examples.

Previous description of Button

This is the previous description of the Button object:

The Button object is a powerful tool for creating Graphical User Interfaces (GUIs).

Button is a sub-object of Touchscreen. You cannot Make a Button - the only way to create a
Button is to send the 'create' version of the Button message to a Touchscreen object.

A typical GUI consists of a set of menu pages, and each menu page consists of a set of Buttons
.

Each Button object holds data that help your program to know how to draw it in different states
of being pressed or active, and what action to take when it is pressed. In fact a Button object
doesn't do much more than hold data values in a convenient form.

Summary of messages

523 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Creation (Button,in Touchscreen object)

Active

Asserted

Draw

Element

Height

Name

Key

Width

XPos

YPos

Print

Active

Not needed when using user-class based GUI Library.

Active Int

The value of Active may be used in your Venom code to control how a button is displayed, and
whether a press on that button is acted on.

For example, you may decide to draw inactive buttons in grey colours, and block them from
taking any action or making any sound if they are pressed.

Active is initalised to the value of the optional parameter Active, supplied when the button is
created, or to the value 1 by default.

You can set it to any value at any time.

Asserted

Not needed when using user-class based GUI Library.

Asserted Int

Asserted returns whether a particular button is pressed or not. It does not actually scan the
touchscreen hardware, but instead uses information gathered the last time the Event message
was sent to the parent TouchScreen object. Only one Button can ever be Asserted at any one
time - and this will be the Button associated with the last Event.

It is also possible for no (zero) Buttons to be Asserted at a particular time.

Asserted is useful when you need to draw a button differently depending on whether it is pressed
or not.

524TouchScreen: Button

Copyright © 2009-2021 Venom Control Systems Ltd

Draw

Not needed when using user-class based GUI Library.

Draw Pointer

The Draw message returns a procedure pointer - the one that was supplied to the Button when it
was created.

It holds a pointer to a Venom procedure that 'knows' how to draw a particular 'type' of button in
your application.

You will have to write this procedure, or use an example from the code snippets on our website.

Example

This code gets a procedure pointer from a button object and the calls the procedure, sending it
one parameter - the button object.

This is almost always the way that the Draw message will be used. It's a complicated Venom
statement - but you probably don't need to understand it fully - just use it as it is shown here.

[(!button_obj.Draw)(button_obj)] ; Draw the Button.

You can also usefully write a procedure to draw all the Buttons held by a Touchscreen object:

To draw_all_buttons
 Local button_obj
 Repeat touch.Count ; For every Button held by touch...
 [
 button_obj := touch.Button(Index0) ; Get the Nth
Button in the list
 [(!button_obj.Draw)(button_obj)] ; Call the Venom
procedure to draw it.
]
End

Element

Element(Int index) Any

<Button>.(Int index) Any

525 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Note: when using the user-class based GUI Library, Element is used to hold a reference to
the GUI object associated with the area defined by the Button's rectangular extent.

Element allows you to access any user-defined values in the Button object. These user-defined
values are set up when the button is first created by appending extra parameters to the
parameter list.

Element will throw a runtime error if you try to access values that haven't been defined.

These extra values might be used to store alternative text for the button, font numbers, bitmap
images or colours - to customise each button on a menu page. Element is writeable, so these
values can be changed whenever needed.

Example

OK_button := ts.Button(5,"OK", 10, 10, 50, 30, @draw_normal_button, 1, 5, "Not OK")

Here we've added a couple of user-defined values to the normal parameter list: 5 and "Not
OK".

It's up to you how you use these in your application, but this code shows how you might access
them.

-->Print OK_button.Element(0)
 5-->
-->Print OK_button.Element(1)
 Not OK-->

Note we used the 'longhand' version of the Element message above. The shorthand version
would look like this:

-->Print OK_button.(0)
 5-->

Height

Not needed when using user-class based GUI Library.

Height Int

Returns the height of the Button object, set when the Button was first created. This is used in
drawing the button, typically to define the height of a TextBox.

526TouchScreen: Button

Copyright © 2009-2021 Venom Control Systems Ltd

Name

Not needed when using user-class based GUI Library.

Name String

Name is an active variable initialised by the Name parameter when the Button is created. You
can change a Button's name at any time.

Name is usually used to hold text that labels a button when it is drawn.

Example

To draw_simple_button(b)
 lcd.Pen ; reset to default colours.
 lcd.Format(0) := 1 ; Set 'word wrapping'.
 lcd.TextBox(b.XPos,b.YPos,b.Width,b.Height,1,0) ; Draw a
simple button
 Print To lcd, Centre, b.Name
End

Key

Not needed when using user-class based GUI Library.

Key Int

Key returns the 'Key value' of a button. This is initialised to by the Key parameter when a button
is first created.

Key is usually used to hold a number that identifies what action the button is associated with. It
is often used as the control value in a Select Case construction.

Deciding exactly what the Key value is to represent is often the central decision to be
made when designing a complex menu page.

Width

Not needed when using user-class based GUI Library.

Width Int

Returns the width of a Button object, set when the Button was first created. This is used in
drawing the button, typically to define the width of a TextBox.

527 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

XPos

Not needed when using user-class based GUI Library.

XPos Int

Returns the X position of a Button object, set when the Button was first created. This is the
horizontal position of the left hand edge of the Button.

This is used in drawing the button, typically to define the X position of a TextBox.

YPos

Not needed when using user-class based GUI Library.

YPos Int

Returns the Y position of a Button object, set when the Button was first created. This is the
vertical position of the bottom edge of the Button.

This is used in drawing the button, typically to define the Y position of a TextBox.

Print

Not needed when using user-class based GUI Library.

Print <Button>

A button object will print out some of the values of it's stored data.

The format is not yet fixed.

Example

-->Print button_obj, CR
[Button: 5 'OK' (10,10)(50,30) @?? 1]
-->

WiFiLink

The WiFiLink object gives the VM2's TPC/IP networking system access to a WiFi network by
controlling a WiFi module through a serial port.

Any module running Gainspan's IP2WiFi application firmware is supported. So far the WiFiLink
object has been tested with Gainspan GS2011 and GS2100 modules.

In general, the behaviour and interface of the WiFiLink has many features in common with the
Ethernet interface and uses similar syntax and naming conventions.

WiFi Modes

The WiFiLink can be set up as an infrastructure station (connecting to an existing wireless LAN)

528WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

or as a limited access point (creating a wireless LAN for others to connect to).

Security

WPA2 security is enabled by default. The WiFiLink object provides simple passphrase
management.

Scanning for Access Points

The WiFiLink can be made to produce a list of locally detected access points to assist with
choosing a network.

Serial Interface and Speed

The serial port is run at 921600bps, the highest speed supported by the Gainspan module for
serial access.

Hardware flow control is needed, and configured in the serial port and the WiFi module, so RTS
and CTS must be connected.

Glossary of Wireless Networking Terms

Access
point

A WiFi device configured to create and control a network, and which acts as a hub
through which all data is passed.

Station A WiFi device configured to connect to an existing network by associating with an
access point.

SSID "Service Set IDentifier", meaning the name of a wireless network, used to define
which one we are connecting to when there are several within range.

Passphras
e

A short string of text, used as the basis for generating encryption (security) keys. If
encryption is enabled, the passphrase is set at the access point, and any client must
know the passphrase to be able to connect to the access point and use the
network.

DHCP (also used in wired Ethernet) stands for Dynamic Host Configuration Protocol. It is
the commonest method used by computers to set up network connections
automatically, and relies on the network having a DHCP server that manages IP
addresses, and knows the IP address of a DNS server and gateways if they exist.

DNS Domain Name Service: The mechanism that translates domain names like www.
google.com into numeric IP addresses.

Summary of messages

529 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Make

Address

Connect

Debug

Find

Protect

Status

Value

Print

Creation

Make wifi WiFiLink(Int port [, addr/hostname[, dns[,
gateway]]]])

Parameter Type Default
Value

Description

port int - Serial Port Number. You do not have to
create a serial port object; the WiFiLink
object will set up the selected port
automatically.

addr/hostname int or
strin

g

No
hostnam

e, use
DHCP

If numeric or a string that looks like a valid IP
address, sets IP address of WiFi interface.

Any other string is assumed to be a hostname:
DHCP is used to obtain an IP address and
DNS and gateway information, and the
hostname is sent to the DHCP server in case
a local DNS service can use it.

dns int or
strin

g

0 (no
DNS)

IP address of DNS server, if fixed IP address
was set by the second parameter. 0 means no
DNS is available.

gateway int or
strin

g

0 (no
gateway)

IP address of default gateway to networks
outside the LAN, if fixed IP address was set
by the second parameter. 0 means no
gateway is available.

Where IP addresses are supplied as a string, they are in the conventional "dotted-quad" notation
used for IPV4 addresses, e.g. "192.168.1.200"

530WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

Examples

(Also see Address and Connect)

Simple Station Mode

Make wifi WiFiLink(5) Serial port 5
Suitable for connecting in Station mode
Use DHCP to get network information

wifi.Connect(0, "MySSID", "MyPassword")Connect to an existing WiFi network

This is suitable for use when connecting to an existing access point, e.g. office or factory
network, and where the VM2 will be initiating data connections but not receiving them.

Station Mode with Hostname

Make wifi WiFiLink(5, "controller1")Serial port 5
Reachable on the network by the name
"controller1"

Suitable for connecting in Station mode
Use DHCP to get network information

wifi.Connect(0, "MySSID", "MyPassword")Connect to an existing WiFi network

This is suitable for use when connecting to an existing access point, e.g. office or factory
network, and where the VM2 may be receiving incoming connections, e.g. running a web server
which can be accessed with the host name "controller1". This will only work automatically if
the network has linked DHCP and local DNS servers.

Creating an Access Point

Make wifi WiFiLink(5, "192.168.1.1")Serial port 5
Has fixed IP address 192.168.1.1
Suitable for connecting in Station mode
Use DHCP to get network information

wifi.Address ('S', "192.168.1.100",
 "192.168.1.199", "controller1")

Set up VM2 as DHCP server, with
hostname "controller1"

wifi.Connect(2, "MySSID", "MyPassword", 6)Create a Wireless network using channel 6

Another device can now associate with the network created by the VM2, and can reach the
VM2 itself by the hostname "controller1". For example, a smartphone or laptop could use its
web browser to communicate with a web server based application on the VM2.

Station Mode - Fixed IP

Make Wifi WiFiLink(5, "192.168.1.101", Serial port 5

531 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

 "192.168.1.10", "192.168.1.1") Set IP address, DNS server and default
gateway

wifi.Connect(0, "MySSID", "MyPassword")Connect to an existing WiFi network

"Fixed IP" networking like this might be useful if the VM2 needs to receive incoming connections
(e.g. it's running a web server application) and the network does not have a linked DNS and
DHCP servers. The IP address would have to be manually selected to be in the local network
IP range but not in the DHCP pool (if any exists), and the VM2 could then be reached by its IP
address. The correct DNS and Gateway addresses to use, if needed, must be found out from
the local network configuration. They won't be needed if the VM2 is only using the local
network.

Address

Address(Int type, various)

See the Ethernet Address message, which has identical functionality and in fact uses the shared
code for both wired ethernet and WiFi.

Note that the WiFiLink object does not currently support Multicast operation.

Connect

Opening and Closing a Previously Used Connection

Connect(0) Int

Connect(1) Int

Returned value: 1 on success, 0 on failure.

The first two forms of the Connect message simply associate (parameter = 1) and
disassociate (parameter = 0) the Wifi object from a previously associated access point, or
enable and disable operation if the WiFi object is configured as an access point.

Associating with an Access Point by Name

Connect(0, Str SSID, Str passphrase[, Int channel)
Int

Configures the mode, SSID and Passphrase in the object and attempts to associate with the
named access point.

If a channel is specified, only that channel will be used.

532WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

Returns 1 on success, 0 on failure

Creating an Access Point

Connect(2, Str SSID, Str passphrase[, Int channel)
Int

Configures the mode, SSID and Passphrase in the object and creates an access point.

If a channel is not specified, the module will choose a channel to use.

The passphrase must be between 8 and 63 characters long.

Returns 1 on success, 0 on failure

Associating With a Found Access Point

Connect(AccessPoint ap, Str passphrase) Int

Uses an AccessPoint object returned by the Find message to connect to the
corresponding access point. In cases where the same SSID is available on more than one access
point, channel, this will request a connection to the one whose MAC address and channel match
those contained in the AccessPoint object.

Returns 1 on success, 0 on failure

Debug

Debug(Int sel[, param])

Allows various debugging options.

sel param Description

0 0 or 1 Turn on (1) or off(0) packet debug, in which a summary of every packet
sent and received is sent to the serial terminal, one per line.

0 value > 1 Selective packet debugging. The parameter can be any combination of
these values, each using one binary bit of a 16 bit integer:

$0002 ARP Address resolution: IP to MAC addreses

$0004 UDP User Datagram Protocol packets (IP)

$0008 IP Internet Protocol packets

$0010 TCP All TCP packets (IP)

$0020 IPV6 Not supported by Venom

533 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

$0040 IPX Not used by Venom

$0080 ICMP "Ping" as in IP.Time message

$0100 IGMP Group Management - not used by Venom

$0200 DNS Domain Name Resolution (UDP, IP)

$0400 HIP Host Identification - not used by Venom

$0800 DHCP Dynamic Host Configuration Protocol (see DHCP)

$8000 Unknown Anything else: show numeric protocol identifier.

1 0 or 1 Turn on (1) or off (0) I/O debug.

I/O debug shows all command interaction with the module ("AT..."
commands and their responses) with the exception of commands sent
periodically to check the status of the link if it has been silent for a while.

2 "AT"
command

Send command to module and display results on terminal (command is a
string usually starting with "AT")

3 - Show ARP table (association of MAC addresses with IP addresses.)

Of the listed debug actions, Debug(0, n) (or Debug(0) := n) is the only one likely to
be useful in tracing problems.

If you have a copy of the Gainspan IP2Wifi Application Programmer's Guide you can find
commands to control features like power saving, but use of these is not supported by Venom.

ErrorAction

ErrorAction Int

Assigning a value of 1 to ErrorAction suppresses a run time error when a static IP address
assignment results in an address conflict. It is effectively a promise that the condition will instead
be checked by a Status message.

Find

Make a List of available Access Points

Find(Buffer buf) Int

Scans for access points within range.

Returns the number of access points found.

buf must be created as Buffer(Any).

On return buf contains a list of AcessPoint objects.

534WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

Find The Best Access Point for a known SSID

Find(Str SSID) AccessPoint or Nil

Scans for access points within range, and then selects one with matching SSID. If more than one
access point matches the SSID, the one with highest signal strength is chosen.

The returned value is an AccessPoint object, or nil if no suitable access point found.

Protect

Protect([Int mode]) Int

Gets or sets the Security/encryption protocol for the WiFi connection.

The current value is returned, and can optionally be set by supplying it as a parameter.

When used as an Access Point, the WiFiLink object uses WPA2-PSK by default.

Security Modes

Value Meaning Description

0 Auto Client will use the best protocol supported by both itself and the
access point.

1 None No encryption is used at all. Not recommended.

4 WEP The original Wireless security protocol, now deprecated because it is
very insecure. Not supported by this software.

8 WPA-PSK WPA is widely used and a huge improvement on WEP.

WPA2 is a further enhancement to WPA and available on most new
equipment.*

PSK = Pre Shared Key, meaning the security passphrase must be
configured separately into the client and the access point. This is
sometimes described as "WPA Personal" or "WPA2 Personal"

16 WPA2-PSK

32 WPA
Enterprise

Here, "Enterprise" refers to a different mechanism for setting up
encryption keys using a central authentication server. It is only used
in large networks.

64 WPA2
Enterprise

*WPA and WPA2 can be configured to use TKIP or AES encryption. AES is the more modern

535 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

encryption scheme, more secure and in tests we have also found it to be give better performance
and reliability with the hardware we have used.

Example: Setting Up an Open Network

To override the default security mode in an access point, set Protect to a different value
before sending the Connect message,.g. to set up the VM2 as an open access point, use
code as shown below. Note that a dummy passphrase must be used because

wifi.Protect(1)

wifi.Connect(2, "myssid", "dummypassphrase")

Status

Status Int

Returns 0 if the Wifi module is associated with an access point or has been activated as an
access point and is correctly configured and working properly.

(the same condition as when Valid returns true)

If there is not a usable connection, the value indicates what is wrong.

Status value Meaning

0 Normal operation

1 Not associated

2 DHCP failure

3 IP address conflict

Valid

Valid Int

Returns 1 if the Wifi module is associated with an access point or has been activated as an
access point and has been properly configured, else 0.

536WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value Int

Returns the Received Signal Strength on the currently associated (connected) network. It is a
negative number expressing the signal strength in dBm and has a typical range from -30 (strong)
to -100 (too weak to use).

Example

-->Make wifi WifiLink(5)
-->wifi.Connect(0, "testwap", "ZZyg2kl96P0")
-->print wifi.value,CR
 -61
-->

Print

Print wifi [: Int option]

Without a colon option, this lists several pieces of information about the WiFi interface in the
following format.

WiFiLink using serial port 5

wifi0:

MAC = 20:f8:5e:c1:ea:a5

IP = 172.16.1.222

DNS = 172.16.1.148

GW = 172.16.1.199

host = <no hostname>

mode: STATION security: WPA2-PSK

SSID: testwap

Passphrase: sn678K45tXpu

+WSTATUS result:

MODE:0 CHANNEL:2 SSID:"testwap"

BSSID:4c:e6:76:e0:37:04 SECURITY:WPA2-PERSONAL

Colon Options

These select individual items from this list:

Option Value printed

0 full summary as above

537 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

1 MAC address (48 bit Ethernet address)

2 IP address

3 DNS server address

4 Gateway address

5 Hostname[.domain]

6 SSID (network name)

7 Passphrase

8 Channel number, 0 if not known.

9 station or access point

10 associated or not associated

AccessPoint

The AccessPoint object stores information about a remote WiFi Access point. It can only be
created from a WiFiLink object (using the Find message) and its main uses are

to display information to enable manual selection of an access point.

to specify an access point in the WiFiLink Connect message.

The data stored in an AccessPoint object can be accessed in several ways.

Creation

Channel

Compare

Key

Name

Value

Protect

Print

Channel

Channel Int

This is a value from 1 to 14 representing a Wireless channel mapped to a centre frequency in the
802.11 standard 2.4GHz WiFi spectrum.

Note on 802.11 Channel Use

When setting up a network in an environment where there are several other wireless networks, it

538WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

is beneficial to choose a channel not used by others, and since numerical adjacent channels can
also interfere it is better still to keep as far away from other channels as possible.

In some parts of the world there are restrictions on the use of channels 12-14.

See https://en.wikipedia.org/wiki/List_of_WLAN_channels for more detailed information.

Creation

An AccessPoint object can only be created from the WiFiLink Find message which makes
the WiFi module perform a radio scan for local access points.

The Find message is supplied with a Buffer(Any) object, which is filled with
AccessPoint objects, or an SSID string in which case it will return a single
AccessPoint object describing the access point with the highest signal strength whose
SSID matches that supplied.

Compare

Compare(various x[, Int uncased[, Int type]]) Int

Compares the SSID or signal strength of an AccessPoint object with either a given value
or the same property of another AccessPoint object.

Parameter Type Default Description

x AccessPoint - Compare with another AccessPoint

Int - Compare signal strength with this value

string - Compare SSID with this value

uncased int 0 For SSID compare, ignore case if nonzero

type int 0 0 : compare SSID

1 : compare signal strength

These variations of the compare message enable a buffer of AccessPoint objects (as
created by the WiFiLink.Find message) to be sorted by SSID or signal strength, or searched
with a Find message. See Buffer.Sort and Buffer.Find for more information about how this
works with object Compare messages.

Examples of use with Sort

-->Make wifi WiFiLink(5)
-->Make aplist Buffer(Any)

https://en.wikipedia.org/wiki/List_of_WLAN_channels

539 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

-->wifi.Find(aplist)
-->aplist.Sort(2) ; sort in alphabetical order of SSID
-->print aplist
18:1e:78:2b:d0:54 -93dB Ch11 WPA2-PSK "BTHub4-ZK36"
18:1e:78:2b:d0:57 -88dB Ch11 OPEN "BTWifi-with-FON"
18:1e:78:2b:d0:59 -92dB Ch11 WPA2-PSK "BTWifi-X"
e0:46:9a:0f:f8:6e -74dB Ch 6 WPA2-PSK "Micro-Robotics"
02:7b:ef:45:d5:de -75dB Ch10 WPA-PSK "Prospect Research"
4c:e6:76:e0:37:04 -71dB Ch 2 WPA2-PSK "testwap"
20:c9:d0:1d:4b:05 -97dB Ch11 WPA2-PSK "Zippin Pippin Guest"
-->
-->aplist.sort(1, 1) ; sort in descending order of signal strength
-->print aplist
4c:e6:76:e0:37:04 -71dB Ch 2 WPA2-PSK "testwap"
e0:46:9a:0f:f8:6e -74dB Ch 6 WPA2-PSK "Micro-Robotics"
02:7b:ef:45:d5:de -75dB Ch10 WPA-PSK "Prospect Research"
18:1e:78:2b:d0:57 -88dB Ch11 OPEN "BTWifi-with-FON"
18:1e:78:2b:d0:59 -92dB Ch11 WPA2-PSK "BTWifi-X"
18:1e:78:2b:d0:54 -93dB Ch11 WPA2-PSK "BTHub4-ZK36"
20:c9:d0:1d:4b:05 -97dB Ch11 WPA2-PSK "Zippin Pippin Guest"

Notes:

In the first example, Sort(2) specifies a case-insensitive sort, which is what you probably want
for SSID names.

In the second example, the first parameter of Sort(1,1) is set to 1 for a descending order,
and the second parameter is set to 1 to request sorting on signal strength.

Key

Key str

Sets the passphrase for the access point from any string type.

The AcessPoint object may then be passed to a WiFiLink Connect message to
associate with the specified AP.

Name

Name(str ssid)

This messages copies the AcessPoint's SSID to ssid which must must be a string variable.

540WiFiLink

Copyright © 2009-2021 Venom Control Systems Ltd

Value

Value Int

Returns the signal strength of the access point. It is a negative number expressing the signal
strength in dBm and has a typical range from -30 (strong) to -100 (too weak to use).

Protect

Protect([Int mode]) Int

Gets the security (encryption) protocol for the access point.

Security Modes

Value Meaning Description

0 Auto Client will use the best protocol supported by both itself and the
access point.

1 None No encryption is used at all.

4 WEP The original Wireless security protocol, now deprecated because it is
very insecure.

8 WPA-PSK WPA is widely used and a huge improvement on WEP.

WPA2 is a further enhancement to WPA and available on most new
equipment.

PSK = Pre Shared Key, meaning the security passphrase must be
configured separately into the client and the access point.

16 WPA2-PSK

32 WPA
Enterprise

Here, "Enterprise" refers to a different mechanism for setting up
encryption keys using a central authentication server. It is only used
in large networks.

64 WPA2
Enterprise

Print

Print ap

Prints a 1 line summary of the AcessPoint's data, e.g.

-->make wifi wifilink(5)
-->ap := wifi.find("Micro-Robotics")
-->print ap,cr
e0:46:9a:0f:f8:6e -67dB Ch 6 WPA2-PSK "Micro-Robotics"

541 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

-->

Print Modifiers (Colon Operators)

Print ap:n

printf("%no", ap)

These enable selected pieces of information about the AccessPoint object to be printed.

n Prints Example

0 Everything (same as no
modifier)

e0:46:9a:0f:f8:6e -67dB Ch 6 WPA2-PSK
"Micro-Robotics"

1 SSID Micro-Robotics

2 Signal Strength -67dB

3 Channel 6

4 Security WPA2-PSK

5 MAC address e0:46:9a:0f:f8:6e

XMODEMLink

XMODEM is a very simple and widely supported file transfer protocol for use on direct serial
links. It does not use TCP, IP or PPP. It is useful for transferring files between a VM2 and a
host computer such as a PC using a terminal program like Tera Term Pro or Hyperterminal, or a
UNIX or Linux system using rx and tx (rz and sz with the -X option).

File sizes

XODEM transfers files in fixed size blocks of 128 bytes. If a file is not an exact multiple of 128
bytes long, the last block is padded with data to make it up to 128 bytes. The VM2 XMODEM
protocol uses zero (ASCII NUL) for this purpose when sending a file. Some implementations
use Ctrl/Z (chr 26 or ASCII SUB) as padding for text files. The XMODEM protocol itself has
no means of specifying exact file length.

File Names

XMODEM does not transfer any file name or data type information. The program or user must
supply a file name and determine the type if the destination or source is a file.

542XMODEMLink

Copyright © 2009-2021 Venom Control Systems Ltd

Checksums, CRC and YMODEM

There are numerous extensions to XMODEM, notably XMODEM-CRC which uses a 16 bit
CRC instead of an 8 bit checksum for better error detection, and variations with larger packet
sizes and the ability to transfer file names and perform batch transfers. This implementation
attempts to use the more robust CRC method, dropping back automatically to checksum mode
if the other end of the link does not support CRC. This behaviour can be controlled by an
optional Make parameter

Using XMODEM with the VM2 File System

Note that the File objects can use XMODEM directly to send or receive a VM2 file through a
serial port. In order to do this, it is NOT necessary to create an XMODEM protocol object.

See File.Put, File.Get

Summary of messages

Make

Flush

Free

Get

Put

Queue

Reset

Creation

Make <object> XMODEMLink(Int portnumber [, Int
crcmode))

portnumber A serial port number. The serial port must be created first and set set for 8
bits, no parity.

crcmode 0 - only use the older checksum method.

1 (default) - try CRC mode when receiving, fall back to checksum mode if
no response

2 - only accept CRC mode when receiving.

The link is created in an initial state where it is neither transmitting nor receiving. The first Put or
Free message puts it into transmit mode, and the first Get or Queue message puts it into receive
mode.

543 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Some Examples of use

1. Simple blocking send

Make x XMODEMLink(1)
f := fs.open("myfile.txt", "")
While f.Queue > 0
[
 ok := x.Put(f.Get)
 If ok = 0 break
]
If ok
 x.Flush

2. Receive in a polling loop (COPY)

Make x XMODEMLink(1)
f := fs.open("rxfile.dat", 8)
f.empty
Forever
[
 some_polling_function
 some_other_polling_function
 If x.Queue > 0
 f.Put(x.Get)
 If x.Queue < 0
 [
 if x.Queue = -1
 ; Transfer completed
 ...
 ; file receive failed...
]
]

Flush

 Flush Int

Returned value:
True (1) if successful
False (0) if failed, e.g. because no acknowledgement was received

Flush completes an outgoing file transfer. Any current incomplete packet is padded out to 128
bytes with 0 (NUL) bytes and then sent. The process waits for the last packet to be
acknowleged, sends an EOT byte to indicate the end of the transfer, and waits for that to be
acknowledged, returning True if the process completed without timout or cancellation.

544XMODEMLink

Copyright © 2009-2021 Venom Control Systems Ltd

Free

 Free Int

Returned value:
0-128 : free space in transmit buffer
-2 : Connection cancelled by other end
-3 : Transfer failed with timeout
-4 : Connection closed

Free returns the number of free bytes that can be written to in the transmit buffer. A positive
value shows the number of bytes that can be written using the Put message without blocking.
Zero means that a Put message will wait until free space is available. A negative value indicates
that something has gone wrong and the transfer will not complete.

Put

 Put(Int byte_to_send) Int

Returned value: True (1) : sent OK
False (0) : failed

Put waits if necessary for any current full packet to be acknowledged, then places the byte in the
transmit buffer. If the buffer becomes full as a result, a packet is transmitted.

A returned value of 0 means that the transfer has either timed out or been cancelled by the other
end of the connection.

Queue

 Queue Int

Returned value:
0-128 : bytes available
-1 : End of file received
-2 : Connection cancelled by other end
-3 : Transfer failed with timeout
-4 : Connection closed

Queue returns the number of bytes available in the receive buffer. A positive value shows the
number of bytes that can be read using the Get message without blocking. Zero means that a Get
message will wait for an incoming packet. A negative value indicates that something has gone
wrong and the transfer will not complete.

545 Object Types

Copyright © 2009-2021 Venom Control Systems Ltd

Reset

 Reset

The Reset message returns the XMODEM object to the same initial state as when created. If a
transfer was in progress it is cancelled. After a transfer has completed, a Reset is necessary to
enable a new transfer to take place.

Get

 Get Int

Returned value:
+ve : next received byte
-1 : End of file
-2 : Connection cancelled by other end
-3 : Timeout
-4 : Connection closed (possibly because of an earlier error)

Get waits until there is incoming data available, then returns the next byte of incoming data or an
error code in the event of failure or normal end of file.

Pre-processor commands

547 Pre-processor commands

Copyright © 2009-2021 Venom Control Systems Ltd

Pre-processor commands
Venom2 has a 'pre-processor' built into it - rather like that used by the C language.

This allows you to define macros and do conditional compilation.

All pre-processor commands are introduced using the # symbol. The # must be the first non-
white-space character on the line.

#Define, etc

#Define <macro_name>[(<parameter list>)] <text of
macro> [;optional comment]

#Define is used to define macros.

Macros are pieces of program text that have been given a name. They may be used to define
constants, or larger fragments of code.

The macro name obeys the same rules as any other Venom2 name - i.e. it must start with a letter
or underscore, and may only contain letters, decimal digits and underscore.

The macro text can be any text you like, including quoted strings.

The macro declaration must be the only text on the line, apart from indentation with space or tab
characters and an optional comment at the end.

Examples:

#Define PI 3.14159
#Define clock_present net.Find(160)
#Define Age .Element(5) ;invent new message name

Macros with parameters

Macros may take parameters. These are similar to the parameters to a procedure. Every time
the parameter name appears in the macro text, it is replaced by the text of the parameter
supplied when the macro is used.

E.g.

#Define SQUARE(A) (A * A)
#Define HYPOTENUSE(A,B) (Sqrt(SQUARE(A)+SQUARE(B)))
Print HYPOTENUSE(3,4)

Parameters in the macro definition

Macros can have any number of parameters.

The 'formal' parameters to a macro must be contained within (), and must be separated by
commas.

548#Define, etc

Copyright © 2009-2021 Venom Control Systems Ltd

No space is allowed between the end of the macro name and the (at start of the parameter list.

Macro formal parameter names obey the same rules as for any name in Venom.

Macro parameter names are only 'in scope' inside the macro definition - so you can reuse any
existing local, global, macro or parameter names.

Parameters when the macro is used

The text of the actual parameters to a macro must be contained within () and separated by
commas.

The actual parameter 'values' can be any text, including quotes, parentheses, semicolons

and commas, so long as

 The quotes are balanced

 The parentheses are balanced

 Any commas are inside quotes or parentheses

Macro parameters are expanded before starting to parse the macro.

Listing Macros

Macros may be listed out:

List Define ; lists all macros
List <name> ; lists out the given macro
List Word ; lists out all symbols by type, including macros.

Removing macros

Macros may be removed using

#UNDEF macro_name

Redefining macros

Macros may be redefined using #Define, but if the macro text is at all different from the
original definition then the compiler will issue a warning. To redefine a macro without getting a
warning use #REDEFINE instead.

#REDEFINE can be used even if the macro hasn't been defined yet.

Constant folding

Because the Venom compiler will evaluate expressions involving constant values before
generating the code for them, wherever possible, there is no performance loss on using macros
that evaluate to complex expressions.

For example, though the macro hours (below) will expand to the text ((1000 * 60) *

549 Pre-processor commands

Copyright © 2009-2021 Venom Control Systems Ltd

60), the compiler will evaluate the expanded text to the single value 3600000 before using it.

#Define hours (minutes * 60)
#Define minutes (seconds * 60)
#Define seconds 1000 ; (One second in mS)

Wait hours * 2 ; Wait for two hours...

Macro limitations

Macros may only be one line long

You must make sure there is no space between the end of the macro name and the opening
parenthesis (for the parameter list. If there is a gap then the parameter list is seen as part of
the macro text.

 It's useful to put parentheses() around macros that expand to an expression - to ensure the
correct calculation precedence when they are used. For example,

#Define twice(A) (A+A)
If you didn't put the expression in parentheses then if the macro was used in another
expression, the + operator might come after another operation.

#If, etc

#If <Int constant expression>
#ELIF <Int constant expression>
#Else
#ENDIF

The #If set of preprocessor commands are used to hide sections of your Venom code from
the Venom compiler, depending on the value of expressions that can be calculated by the
compiler. The general structure of #If is shown below:

#If <conditionA>
 Compile this line if conditionA is non-zero

550#If, etc

Copyright © 2009-2021 Venom Control Systems Ltd

#ELIF <conditionB>
 Compile this line if conditionB is non-zero and previous conditions were all zero
#Else
 Compile this line if the previous conditions were all zero
#ENDIF

#If is used to start a block of conditional compilation.

#ENDIF is required to end a #If block.

#Else indicates a block of code that should be compiled if the #If condition evaluated to 0
(False).

#ELIF is a shortcut, so you don't have to do #If and #Else. You can use as many of these
as you like. The first #If or #ELIF block with a non-zero expression will compile; all further
#ELIF and #Else blocks will not compile.

Only one pre-processor command may appear on any line. It must be the first non-white-space
on the line. Other text on the line after the command is generally ignored. The pre-precessor
commands are not case sensitive, just like the rest of Venom, so you can use #if, #else,
etc.

The expressions passed to #If, etc, must evaluate to a constant integer. Any expression that
the compiler can evaluate at compile time, and that evaluates to an integer constant, may be
used, including macros. The expressions follow the same rules as in the Venom language.

Nesting

You can nest #If, etc, to many levels - current the maximum nesting is 31 levels.

Examples

Example 1

; Select mode:
#Define debug_mode True

; Conditionally compile code depending on mode:
#If debug_mode
 Print value,CR
#Else
 store(value)
#EndIf

Example 2

551 Pre-processor commands

Copyright © 2009-2021 Venom Control Systems Ltd

; Set the product we are compiling code for:
#Define PRODUCT_CODE FULL_SPEC

; Define some product numbers:
#Define FULL_SPEC 1
#Define MID_RANGE 2
#Define CUT_DOWN 3

; Conditionally compile some code:
#If PRODUCT_CODE = FULL_SPEC
 Print To screen, "Full"
#ElIf PRODUCT_CODE = MID_RANGE
 Print To screen, "Mid-range"
#ElIf PRODUCT_CODE = CUT_DOWN
 Print To screen, "Cut down"
#Else
 Print To screen, "No Product!"
#EndIf

 If you don't use enough #EndIf commands then you may find that the VM2 doesn't
display the --> prompt at the end of a download. You can get out if this state by hitting Ctrl-
C.

You should, of course, also fix your code.

TCP/IP Networking

553 TCP/IP Networking

Copyright © 2009-2021 Venom Control Systems Ltd

TCP/IP Networking
TCP/IP networking is covered in Venom by a number of related object types. This section
shows how they are related and includes general networking and programming information.

How the protocols are related

IP Protocol Family

TCP/IP Objects Supported by Venom 2

Object Use Description

PPProt PPP Link management protocols for serial link to modem or
GPRS terminal.

Ethernet Ethernet Local Area Networking - hardware driver and low level
protocols: ARP, DHCP.

IProt IP Miscellaneous tools.

TCProt TCP General character stream link between two processes.

UDProt UDP General packet based link between two processes.

FTPClient FTP File Transfer Protocol client.

FTPServer FTP File Transfer Protocol server.

HTTPServer HTTP Web server.

554

Copyright © 2009-2021 Venom Control Systems Ltd

SMTPSender SMTP Send email.

POP3Mailbox POP3 Receive email.

WiFiLink WiFi Wireless Networking interface, similar to Ethernet.

Notes on TCP/IP

Notes on TCP/IP for Venom Programmers

Multitasking and Timing

Once a connection has been made and incoming packets can be expected, it is up to the Venom
programmer to send object messages that result in those packets being seen and processed.

The serial ports have a buffer of 255 characters. Calls must be made sufficiently frequently to
prevent the input buffer from overflowing, or packets will be lost and performance will suffer
dramatically. As an example, at a connection speed of 38400 bps, the input buffer can fill up in
about 64 milliseconds.

The Ethernet interface can receive packets much faster than this, but has a buffer capacity of 4k
which will hold 7 packets so as long as TCP's inherent flow control is operating properly this
should not overflow unless several different sources are trying to send lots of data to the VM2 at
once and the TCP connections have been set up with large receive buffers.

As long as any message is sent to any TCP/IP networking object sufficiently frequently, all
existing connections will be serviced properly. For example, a typical program might satisfy this
requirement by polling a TCP receiver with Queue messages at sufficiently frequent intervals, or
a simple TCP Get message will do the same while it is waiting for data.

In practice this is not usually a problem. A server task is listening constantly anyway, and a client
task is not expecting any incoming packets unless it has sent a request and is waiting for a
response. A minor exception is where you want the VM2 to respond to a "ping" request but not
to participate in any data connection; in that case an IP Go message will allow that to happen.

IP Addresses

IP Addresses and domain names

An IP address is a 32 bit number. It is conventionally written as a “Dotted Quad” of decimal
numbers representing one byte each e.g. “152.158.91.245” but can also be represented
by an integer in Venom.

Any message parameter described as host can be either

An integer representing the IP address

A string representing the address as a dotted quad

555 TCP/IP Networking

Copyright © 2009-2021 Venom Control Systems Ltd

A string containing the domain name, assuming the VM2 has TCP/IP access to a name server,
which is usually the case if an internet connection is available.

A string containing a local host name assigned with the IP.Address message.

The following code illustrates how an IP address is constructed, and the use of the “IP”
formatting specification in a Print statement.

-->a := 23
-->a := a * 256 + 42
-->a := a * 256 + 159
-->a := a * 256 + 212
-->print a:"IP",CR
23.42.159.212
-->

The preceding calculation can also be done by sending the Address message to an IP object
(see ip.Address).

Example Code

1. Simple Ethernet LAN “ping” Test

In three lines of code this creates an Ethernet and IP object and tests the existence and response
time of another node in the network, using the equivalent of the well-known “ping” utility.

1. Make an Ethernet object. The default address is that of the Ethernet interface on our
Application board, and we are going to use DHCP to allocate an IP address, so no
parameters are required.

2. Create an IProt object to receive the Time message and create and receive the
necessary ICMP messages.

3. Send Time message to measure the response time of another device on the LAN and
print the result.

Make eth ethernet
Make ip IProt
Print ip.Time("172.16.1.199"), " ms response time",CR

2. Getting the VM2 to respond to a "ping" Test

The VM2 will send a response to any incoming ICMP packet as long as interfaces are being
polled. Any message activity involving TCP/IP objects will enable this; in addition the Go
message sent to an IP object will cause the interfaces to be polled without any other side effects.
The simplest way to set up a VM2 to respond to ICMP packets on a LAN for test purposes is
this:

Make eth Ethernet
Make ip IProt

556Example Code

Copyright © 2009-2021 Venom Control Systems Ltd

ip.Go
This will now respond to ICMP (ping) packets. Press Ctrl/C to return to a command prompt.

3. Pinging an Internet site through a LAN gateway

This does the same as (1) above, but to a remote host. It is assumed that:

A gateway to the internet exists on the LAN

A DNS name server is available (either local or remote)

DHCP can supply the address of the gateway and the nameserver.

Note: The string “www.google.com” is recognised as not being a numeric IP address, so the IP
system software will transparently make a DNS request for the address.

Make eth Ethernet
Make ip IProt
Print ip.Time("www.google.com"), " ms response time",CR

4. If you don't have a DHCP Server

If there is no DHCP server on your network you will have to assign an available IP address to
the VM2, and set the IP addresses of your name server and default gateway if you need them.
The addresses show are just examples; you'll have to use something appropriate for your LAN.

Make eth Ethernet(12, "192.168.1.52")
eth.address('N') := "192.168.1.200" ; local name server
eth.Address('D') := "192.168.1.199" ; default gateway to internet

You can also do this all at once in the Make statement:

Make eth Ethernet(12, "192.168.1.52", "192.168.1.200", "192.168.1.199")

5. Simple Dialup Program to fetch a Web Page

This program is shown in two alternative versions: either make a dialup connection to an ISP via
a modem or set up an Ethernet connection to a LAN with internet gateway. Both then fetch a
test page from our web site (the test page exists and is at http://www.venomcontrolsystems.co.
uk/testpage.html) and display the text from the page. You can run this if you have a either dialup
account with an ISP or a LAN connected to the internet.

The procedure Init creates the three objects needed. This version is for a dialup connection.

To init
 Make modem SerialPort(38400, 2, 1)
 Make ppp PPProt(modem)
 Make tcp TCProt
 ppp.name("myusername", "mysecretpassword")
 Print To ppp, "AT&F0", CR, "AT&D1M0", "ATDT908456042086"
 ppp.Debug := 1 ; be verbose (this can be changed to 0)

http://www.venomcontrolsystems.co.uk/testpage.html
http://www.venomcontrolsystems.co.uk/testpage.html

557 TCP/IP Networking

Copyright © 2009-2021 Venom Control Systems Ltd

End

The main program procedure opens the dialup connection, then calls the http fetch procedure,
closing the dialup link when it's finished.

Note that when we make the PPP connection, we don't even need to know what our IP address
is (it's the value returned by ppp.open, or 0 if it failed), nor do we concern ourselves with the
address of a DNS server, though both these pieces of information have been assigned to us by
the ISP and will be used internally by later code.

To main
 Print "TCP/IP demo",CR
 if ppp.Open
 [
 fetchtestpage
 ppp.Close
]
 else
 Print "dialup connect failed",CR
End

This alternative version uses Ethernet and will work if your LAN has a gateway to the internet
and a DHCP server.

To init
 Make eth Ethernet
 Make tcp TCProt
End

To main
 fetchtestpage
End

This procedure is a very simple implementation of the client end of the http connection.

1. Open a TCP connection to port 80 (standard port number for http) on the web server
for the VCS web site.

2. Send two lines of text containing a valid http request, followed by an empty line.

3. Receive and display all the headers and text returned. We stop when the remote end
closes the connection, indicated by a negative tcp.Queue value, or if the stipulated
timeout of 10 seconds is exceeded.

Note:

558Example Code

Copyright © 2009-2021 Venom Control Systems Ltd

We simply put the domain name of the site in the tcp.Open message. A DNS query will
be performed invisibly to look up the IP address of the site. The IP address is available
to the Venom code, but rarely needed.

we can close the sending end of the connection straight after sending the request; the
receiving side of the connection remains open until closed by the remote web server.

; simple test page connect
To fetchtestpage
Local c
 Print "TCP connect to http://www.venomcontrolsystems.co.uk...",CR,CR

 If tcp.open("www.venomcontrolsystems.co.uk", 80)
 [
 tcp.printf(<<<:
GET /test.html HTTP/1.1
Host: www.venomcontrolsystems.co.uk
Connection: Close

>>>)

 ;Print To tcp,
 ;"GET http://www.venomcontrolsystems.co.uk/test.html HTTP/1.1",
 ;CR, "host: www.venomcontrolsystems.co.uk", CR,CR

 tcp.close
 tcp.timeout := 10000
 While tcp.queue >= 0
 [
 c := tcp.get
 if (c > 0)
 Print chr c
]
 If tcp.queue = -1
 Print CR,"connection closed",CR
 Else if c = -2
 Print "*** timed out", CR
]
 else
 Print "FAILED",CR
End

559 TCP/IP Networking

Copyright © 2009-2021 Venom Control Systems Ltd

Glossary

Glossary of Abbreviations

Name Expansion Description

ARP Address Resolution
Protocol

Matches up 48 bit Ethernet addresses with IP
addresses

CHAP Challenge Handshake
Authentication Protocol

Part of PPP – a more secure method of verifying a
user’s credentials

CRC Cyclic Redundancy Check Verifies that data in a packet has not been corrupted
in transmission.

DNS Domain Name Service Relates domain names to IP addresses

FTP File Transfer Protocol list directories, send and receive files

HTTP HyperText Transfer
Protocol

The protocol used between web browsers and web
servers.

ICMP Internet Control and
Monitoring Protocol

Used by IP devices to test and report on the state of
the network.

IP Internet Protocol Concerned with addressing and routing

IPCP Internet Protocol Control
Protocol

Part of PPP – deciding IP addresses of the ends of a
link and DNS addresses

ISP Internet Service Provider Usually the entity at the other end of a PPP link,
providing a connection to the rest of the internet.

LAN Local Area Network Network sharing a common geographical location
and address range

LCP Link Control Protocol Part of PPP – setting up connections, negotiating
options

MAC Media Access Control The lowest level Ethernet protocol.
MAC address = Ethernet hardware address

NTP Network Time Protocol Synchronises time-of-day clocks accurately and
efficiently across the net

PAP Password Authentication
Protocol

Part of PPP – verifying a user’s credentials

POP3 Post Office Protocol 3 For fetching email from a mailbox on a POP3 server.

560Glossary

Copyright © 2009-2021 Venom Control Systems Ltd

PPP Point to Point Protocol Family of protocols for using serial lines for packet
transfer

SMTP Simple Mail Transport
Protocol

The method used for sending email, usually though a
sever which passes the mail on.

TCP Transmission Control
Protocol

Setting up sessions between two endpoints; error-
free transfer of streams of byte data between the two
points

UDP User Datagram Protocol For speedy short messages and time-critical data
streams

URI Uniform Resource
Identifier

Standard method of naming a resource on a network
and the protocol for retrieving it

URL Uniform Resource Locator As URI, but more specific about location of
resource

Appendix

562

Copyright © 2009-2021 Venom Control Systems Ltd

Appendix
The appendices contain extra information that doesn't fit into the keywords and object types
sections.

See the Contents tab to the left of this page for each section.

A: Startup Sequence

This bit of 'pseudo code' is intended to show what happens when the VM2 starts up. (This code
has been simplified to show the essence of the logic).

To startup_sequence
 ;This bit is just for Program Mode:
 If (program_mode)
 [
 ; Check to see if we should be reprogramming the VM2 from the
 ; Flash File System.
 #If VM2L IsFalse
 If (USB_SWITCH_ENABLED)
 [
 If reprogrammed_vm2_from_flash_files
 Reset
]
 #ENDIF

 startup_banner ;Display the startup banner

 If clear_memory_question = 'Y'
 [
 erase_ram
 If (application_in_flash)
 erase_flash
]
]

 ;This bit is for Run Mode and Program Mode:
 If (application_in_flash)
 [
 erase_ram ; Always clear RAM when running from Flash.
 load_application_from_flash
 If (program_mode)
 Print "Loaded application from Flash.", CR
]
 Else ; application is in RAM

563 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

 [
 validate_code_in_ram ; Check the code stored in RAM is OK, or clear RAM.
 create_default_procedures ; Make sure default procedures exist
]

 ; Run the startup procedure, And thus the whole application.
 run_command("startup\n");

 command_line ; If startup ends then process the command line.
End

B: Robust applications

This appendix deals with how to create robust Venom2 applications, i.e. those that have the
least chance of going wrong and needing attention when they are in the field.

Protecting your Application Code

While you are developing your application program, your procedures are held in battery-backed
RAM. This is fine for development, but not suitable for a finished application in the field: there
are many ways to lose a program from battery-backed RAM.

Finished applications should be copied into the Flash memory. Flash memory is 'non-volatile' - it
keeps its contents even when not powered. Once the application is in Flash memory the
application is very secure.

 See (OperatingSystem) Protect.

Dealing with runtime Errors

A Runtime error in your code would cause your program to halt forever if it returned to a
Venom command line. This is usually unacceptable for an embedded control application in the
field.

To prevent errors from causing your program to halt use Try to trap any errors that you know
how to handle.

To deal with errors that you haven't thought about, and so don't know how to handle explicitly,
use the ErrorAction system message.

System . ErrorAction := 1
This restarts the Venom application on any error not handled by Catch.

Note: The default startup procedure sets ErrorAction according to the Prog Mode switch:

When the Prog Mode switch is set, runtime errors will be reported to the programmer.

When the Prog Mode switch is not set runtime errors will result in the program restarting.

564B: Robust applications

Copyright © 2009-2021 Venom Control Systems Ltd

You are advised not to alter the the default startup procedure.

Serial Break

Most finished applications should turn off Serial.Escape (which controls Ctrl-C break), as this
could potentially halt an application.

To turn off Ctrl-C Escape, use

Serial.Escape := False

[Ctrl-C Escape is treated as a runtime error, so if Ctrl-C Escape is allowed, but ErrorAction is
set, the Venom application will be restarted].

Note: The default startup procedure sets Serial.Escape according to the Prog Mode
switch:

When the Prog Mode switch is set Ctrl-C is enabled.

When the Prog Mode switch is not set Ctrl-C is disabled.

You are advised not to alter the the default startup procedure.

Watchdogs

A watchdog is a hardware device that has control of the reset input to the controller. If the
program does not 'kick' the watchdog every so often, then the watchdog will reset the controller.
 This is to halt and restart a crashed micro-controller.

In the VM2 controller, the Venom task scheduler kicks the watchdog. This is sufficient to guard
against most bugs in the Venom language, or processor crashes.

C: Calling foreign code

See Call keyword.

D: Development Checklist

The steps involved in developing a typical Venom application are presented here. You may
have completed some of these already.

1. Satisfy yourself that the controller and/or application board have the hardware interfaces
that you require. See the datasheet for the controller. Often customers will buy the
controller from us, and design the application board themselves. However, we can
design and manufacture custom application boards.

2. Get familiar with the Venom language and basic Object Types by reading the Tutorial
and by trying out your ideas on your development system.

3. Use this reference manual for reference on Venom2 keywords and object types.

4. Using development hardware, write key sections of your application to make sure that
they are viable.

565 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

5. Design and build the real application hardware in conjunction with the controller's
datasheet and example circuits.

6. Write the complete application program.

7. Read through the Appendix on Robust Applications to make sure your application is as
robust as possible.

8. Test the application hardware and software.

9. Protect your application from erasure by burning it into the onboard flash memory. See
the system message Protect.

10. Go into production with the application hardware and the application code.

E: Error messages

Here are all the runtime error messages in the Venom2 runtime error system.

Each error has a number and associated error text. Sometimes some extra text is added to the
error text in the table to pin point the error more accurately, e.g. error 5, Un-initialised variable
will usually name the variable concerned.

You can ask Venom to list all of it's error codes using Debug(13).

0 Exit with no error Escape via Exit 0. This is not really an error.

1 Escape via CTRL-C Escape via CTRL-C. This is not really an error.

2 Ram full When there is no RAM left to perform an operation. Often
caused by repeatedly MAKEing objects

3 Value out of range A parameter or operand is outside a required range

4 Type mismatch A parameter or operand is of a type that can't be handled

5 Un-initialised variable Attempt to read a variable that hasn’t yet been given a value

6 Division by Zero An attempt to divide by Zero

7 Write to read-only item Attempt to write to a write-protected item, e.g. a procedure
name, or a read-only message in an object

8 Array/buffer index out of
range

An index is outside limits, e.g. reading off the end of a
Buffer, Array or other indexed item.

9 Illegal bytecode An illegal bytecode is seen by the BCI. Usually caused by a
bug in the Venom compiler or corrupt memory. Please
contact us.

566E: Error messages

Copyright © 2009-2021 Venom Control Systems Ltd

10

 Message sent to non-
object

Attempt to send a message to a non-object, for example a.
Put, where a is an integer.

11

 Parameter list applied to
non-procedure

When a variable or expression is followed by a parameter
list, but isn't a procedure, so can’t use parameters

12

 Device not found Could not find the hardware needed for the operation

13

 Venom stack overflow The Venom Stack is used up; usually caused by recursion in
your Venom program.

14

 Stack wrong at End The BCI finds the stack is not correct. Usually caused by a
bug in the Venom compiler or corrupt memory. Please
contact us.

15

 Unexpected parameter
number/types/values

No type of object is possible with the parameter values and
types supplied to Make or New

16

 Wrong no of parameters
supplied

Procedure or message could not accept the number of
parameters passed

17

 Message not recognised The object didn't accept this message

18

 Attempt to lock object held
by dead task

A task locked an object, then later died without unlocking it;
subsequently another task tried to lock it. See here for how
to block this error.

19

 Message to dead object A message was sent to a dead object

20

[Unused error number]

21

 Hardware fault A fault has been detected in the hardware

22

 Too many Too many items have been created: Some objects, etc, have
a fixed number of sub-object that they support.

23

 Code checking error Internal code check failed (like assertion failure in C).
Please contact us.

24

 File access error File system specific

25

 Resource error Memory or other resource ran out (but not the controller's
SRAM, which is reported with Ram full)

567 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

26

 Script/Data error Invalid data value or syntax error in a script

27

 Protocol error Various TCP/IP errors typically caused by performing
actions in wrong sequence

28

 Heap error An error was detected in the heap structure during a heap
operation. This could be because of a bug in Venom2, or
because your code accessed the heap memory incorrectly
(using ?, Call or other mechanisms that use a raw memory
pointer).

29

 Flash programming error There was a failure while programming one of the internal
flash memories.

30

 Locked/Unlocked too
many times

An object has had .Lock or .Unlock called too many times.
The maximum lock level is 255. Also caused by unlocking
an object that was locked by another task.

31 Device Configuration Error A device was not configured to perform the requested
operation.

32 Task Stop request When Stop is used, a task is forced to exit with this
'error'. This may be trapped using Try, but it will never
appear in a runtime error report.

33 Feature not supported Thrown when a program tries to use a feature not supported
by the current Venom version. Usually when it tries to create
an object.

34 No Print Job Thrown when a Print message is sent to an object and no
Print Job has been set up. Usually when the Print message is
sent explicitly, and not inside a Print statement.

F: FAQ

Text manipulation

Both Strings and text Buffers can be used for manipulating text:

Extract a sub-string

Use Print text:start:nchars to extract a section of text from a String or text
Buffer

Append text

Use obj.Put, where obj is a String or text Buffer.

568F: FAQ

Copyright © 2009-2021 Venom Control Systems Ltd

Print To a text Buffer or String.

Insert text

Use Insert to insert text into a text Buffer

Find a search string

Use Find to find text within a String or text Buffer.

Divide into lines

Print To a Buffer of Any to divide text into individual lines of text, one line per String.

Example:

To GetFiles
 AutoDestruct
 Local BuffAny := New Buffer(Any)
 Print To BuffAny, FileSys:"*.txt":0 ; Each file name matching *.txt will be a string in ba.
 Print BuffAny.(0) ; Print the first matching name.
End

For more Frequently asked questions refer to our website.

G: Glossary

Active variable An active variable is a message whose value may be read and written to. An example is Digital.
Asserted.

Analogue An analogue signal is one that can take a range of values rather than the On and Off of digital
signals. The range is divided up into discrete steps. See Resolution.

Application The application program is the your Venom code, consisting of the procedures you have written.

ASCII ASCII stands for American Standard Code for Information Interchange, and gives a standard
numbering system for the letters, numbers and symbols used in computing. For example, the
ASCII code for the letter ‘A’ is 65.

BCI Byte Code Interpreter - see interpreter.

Binary Binary is the number base 2, where everything is expressed as Bits of either 0 or 1.
Fundamentally, this is what computers work in, but it is rather unwieldy, so hexadecimal is often
used instead.

Bit A bit is a single binary digit, which can either be 0 or 1. Several bits may be combined to give a
number.

Bit-wise A calculation is performed bit-wise if the same operation is performed on every binary bit of a
number individually. In Venom, the And, Or, Eor and Inv operators are bit-wise.

Boolean
Operator

Boolean operators are named after George Boole, who first formally investigated the operation of
the ‘logical connectives’ And, Or and NOT. (The corresponding operators in Venom2 are

569 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

AndAlso, OrElse and IsFalse). Later, the operator Eor was added for mathematical
completeness. Unlike And, Or and NOT, Eor isn’t used in normal speech. A.A. Milne is the
only writer ever to have used Eor successfully in an English sentence.

Byte A group of 8 bits, which can represent numbers in the range 0 to 255. This is the standard unit
of memory for computer systems, chosen because it was enough to store an ASCII code. In
hexadecimal, each hexadecimal digit represents half a byte, or one nybble.

Bytecode A Bytecode is an instruction that the Venom Virtual Machine understands. They are like virtual
machine codes. The Venom2 Compiler turns your Venom code into bytecodes. The Java
language also uses bytecodes as it makes it easy to port to different platforms.

Call When a procedure is executed, either by including its name in the program, or by typing its name
in at the command line, this is referred to as a procedure call. Call is also a keyword in Venom,
used to call code in Assembler, C or other languages.

Channel A channel is a signal used for input and output. It has been given a reference number as a
convenience in Venom. The controller datasheet shows you which channels are available where.

Class A class refers to a kind of object. In Venom there are two distinct groups of classes - those pre-
defined by the language (such as Digital and DateTime) and those defined by the Venom
programmer using the keyword Class.

Code A piece of Code is a program or section of a program.

Command Line The command line is the part of the Venom system that sends the --> prompt to the host
computer and then accepts characters typed in by the user.

Digital A digital signal is one that can either be On or Off. The voltage levels equivalent to On and Off
depend on the hardware concerned. This variation also applies to the polarity: Off is often the
higher voltage!

Dot Chaining Dot chaining is a shortcut that allows you to send a message to the result of a previous message.
Obviously this result must be an object, and this result should not use up any memory.

Expression An expression is a piece of program that performs a calculation. Each expression has a value: the
result of the calculation. The smallest expression is just a value by itself.

Firmware Firmware is software that is permanently stored in the computer by being placed in a non-
volatile memory (e.g. Flash).

Flag A Flag is a name for an integer chosen to only represent True or False. The name is believed to
come from railway signalling. In Venom, True is represented as 1, and False is 0.

Flash This is a ‘writable’ ROM. A flash device on the controller holds the Venom2 Language, and also
your application code when you ‘Protect’ it.

Float A float is a floating-point number, which allows decimal fractions to be represented as well as
whole numbers. Floats in Venom are IEEE single precision.

Fragmentation Fragmentation occurs if the memory blocks used by the application are taken and returned out of
order. As this continues, instead of there being one large area of free memory, there are many
small areas, separated by memory blocks that are still being used. Only programs that do a lot of
complex, dynamic creation and destruction of objects are likely to risk this problem.

Function A function is a name for a procedure that returns a result. By definition, a pure function is one
that only returns a result, and does not have any side effect on any other part of the system.

Garbage Garbage refers to heap memory that has been allocated, but that there is no longer a reference to,
so it can not be de-allocated (or freed) directly. This memory is not useable and may cause a
program to halt due to lack of sufficient memory.

570G: Glossary

Copyright © 2009-2021 Venom Control Systems Ltd

In Venom this can happen when an object is created and then the variable that referenced the
object is overwritten, e.g.

a := New DateTime

a := Nil

Garbage
collection

In some computer languages an automatic garbage collector runs from time to time to recover
'garbage'. However it is very difficult to implement an automatic garbage collector in a Real Time
system. Instead, Venom provides the AutoDestruct attribute for local variables and Class

members.

You can detect garbage in your program by using the garbage scanner: Debug(1,...)

Global variable A global variable is a variable that is accessible throughout the program. Global variables are
created just by assigning a value to a name, e.g: var := 1

Hardware Hardware is the physical electronics that makes up the computer and the devices that are
connected to it.

Heap The heap is an area in the controller's RAM that is reserved for use by your application, and also
the Venom system, in ways that can't be predicted ahead of time.

Hexadecimal Hexadecimal is the number base 16, which is used as a shorthand way of writing binary. The
numbers 10-15 are represented by the letters A-F. Each hexadecimal digit represents 4 binary
bits. Hexadecimal is usually used when accessing a computer’s hardware directly, since hardware
is usually laid out in round numbers in binary.

Host The host is the computer (usually a PC) that runs a terminal emulation program so that the user
can communicate with the controller.

Instance When many objects of a single type are created, each of these objects is referred to as an instance
of the object type. When a procedure is called more than once at the same time by itself, or by
different tasks, each called procedure is referred to as an instance of that procedure.

Int An Int is an integer: i.e. a whole number. Integers in Venom are stored in 32 bits, representing
roughly ±2 billion.

Interpreter The Interpreter is a very fast program that reads and executes bytecodes. The Venom2 compiler
turns your Venom code into bytecodes. The Venom2 interpreter is sometimes called the
Bytecode Interpreter, or the Venom Virtual Machine. VM2 stands for Venom Machine 2.

K, Kilobyte A kilobyte is 1024 bytes. The unusual number is chosen because it is a nice round number in
binary.

Keyword A keyword is one of the basic elements of the Venom language, such as Repeat and If. You
cannot give procedures and variables the same names as any keyword.

Local variable A local variable is a variable that is only accessible within a certain instance of a procedure. They
will ‘eclipse’ any global variable of the same name for the duration of the procedure. Local
variables are created with the Local statement.

Locking Locking is a way of ensuring that only one task has access to a particular object at any time, to
prevent transactions from two different tasks becoming confused.

Machine Code Machine code is the set of instructions that the microcontroller obeys. Programs written in
machine code run faster than those written in the Venom.

Member A member is an item of data defined inside a user-defined Class. Members may be of any data
type, including numeric types, strings and objects.

Procedures defined inside a Class are called Methods, but may usefully be considered as members
of type 'Procedure'.

571 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

Message A message is something that is sent to an object, consisting of a message name, such as On,
Value, DefaultOutput etc., and some parameters. Each object type may respond to each message
in a different way.

Method A method is a procedure defined within a user-defined Class. It is almost identical in it's effect to
a message of a Venom object.

Object An object is an element of the system, containing both code and data, that is used to interface to
the outside world, store data, etc. All objects have a type, which defines how they act in
response to messages. There can be more than one instance of some types, and these act
independently as they hold different data.

Operand An operand is a value acted on by an operator. In the expression ‘a + b’, a and b are operands.

Operator An operator is a language symbol or keyword that acts one or two operands to produce a result.
Each operator has a precedence that governs the order in which operations are evaluated.

Parameter A parameter is a value that is passed to a procedure or message. This value is operated on by the
procedure or message.

Pixel A pixel is the smallest element of a display screen that can be individually controlled. The greater
the number of pixels, the higher the resolution of the screen, and the better quality of the image.

Pointer A pointer is a value that holds a reference to some data, rather than the data itself.

Postfix operator A postfix operator is an operator that comes after the value it modifies. Examples include As Int
and As Float.

Precedence Precedence sets the order of execution of operators in a complex expression. The higher the
priority, the earlier it is executed. See the appendices.

Prefix operator A prefix operator is an operator that comes before the value it modifies. Examples include ! and
Inv.

Procedure A procedure is a set of commands grouped together as one unit. See the To keyword. A
procedure can take parameters, and return a result.

RAM RAM stands for Random Access Memory, but the name is a relic. RAM now generally refers to
memory that is writable as well as readable.

Recursion This is where a procedure calls itself, either directly or indirectly. This can be very useful for
solving some kinds of problems, but is often done unintentionally. In the unintentional cases it
usually leads to a stack overflow error.

Resolution The resolution of a device is the smallest change detectable, or controllable, by it. When used
with analogue I/O, resolution refers to the size of the smallest voltage step between possible
input readings or output levels.

The resolution of a display screen is the number of pixels it has - this governs the quality of the
image. The lower the resolution, the more grainy the image becomes.

The resolution of a timing operation (such as PulseWidthOut.Width) is the smallest interval in
time that the timing can change by.

ROM ROM stands for Read-Only Memory. Usually these days, ROMs are mostly Flash memories.
Flashes are actually writable – though there may be safeguards to stop this occurring accidentally.

Routine Routine is another word for procedure or function.

Software Software is the program that the hardware executes. If software is contained in a ROM, it is
called firmware.

Statement A statement is a complete piece of program that performs some action.

572G: Glossary

Copyright © 2009-2021 Venom Control Systems Ltd

String A string constant is a series of characters, enclosed by quotes, such as “A string”. You can use
String objects and text Buffers for variable text.

Syntax Syntax is the structure of the language: how the elements of the language fit together.

Task A task is part of a program that runs as though it were executed by an independent processor
with access to the same memory. In VM2 a single processor is shared by all the tasks.

Tri-state A tri-state output is a digital output which, as well as being on or off, can go into a high-
impedance state where it doesn’t drive either way.

Type All venom variables are of one type or other, for example Int, Float, String. Type can also refer
to what kind of object something is; in this case the type indicates what messages the object
understands, and what action it takes on receipt of each message. Examples of objects types are
Buffer, PulseWidthOut etc.

Variable A variable is a place to store a value. See also Global variable and Local variable.

H: Number Limits

Integers are signed 32-bit quantities:

Maximum Minimum

2,147,483,647 -2,147,483,648

$7FFFFFFF $80000000

Floats are standard IEEE single precision: 1 sign bit, 8 exponent bits and 23 mantissa bits.

Maximum Least non-zero Precision

±3.39E+38 ±1.18E-38 ~7 decimal digits

I: Operator Precedence

The following table shows the order of precedence of the operators in Venom2. The operators
at the top of the table are more tightly binding than those at the bottom.

Those on the same line have the same precedence.

Operators with the same precedence level are evaluated from left to right in an expression, apart
from prefix operators, which are evaluated from right to left.

Parentheses ()

Postfix • As Int As Float IsFalse Is Has

Prefix - Abs Inv TypeOf ? ?? ???? !
Sin Cos Tan Asin Acos Atan

573 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

Sqrt Exp Log

Multiplicative * / ^ Div Mod >> <<

Additive + -

Comparative > < >= <= = <>

Logical & Bitwise And Or Eor AndAlso OrElse

The following examples show some cases where precedence is important, and how they are
resolved by Venom:

Expression Is interpreted as if it were written
as...

To get the other interpretation,
use...

2+3*4 2+(3*4) (2+3)*4

x And 1 = 1 x And (1 = 1) (x And 1) = 1

2.1 * x As Int 2.1 * (x As Int) (2.1 * x) As Int

! object .Value ! (object . Value) (! object) . Value

!proc_ptr(a,b) ! (proc_ptr (a,b)) (!proc_ptr)(a,b)

If you start a statement with ‘(‘ then you should enclose the statement in square brackets so that
the Venom parser (which doesn’t have statement separators to tell it where a statement ends)
can parse it correctly. Otherwise it may interpret ‘(‘ as the beginning of a parameter list.

So

(!proc_ptr)(a,b)
 should be written

[(!proc_ptr)(a,b)]

J: Speed of Execution

Venom2 is a semi-compiled language, like Java. This means it compiles your code to a set of
bytecodes. These codes are then interpreted by the Venom runtime system to run your
application. Semi-compiled code runs faster than interpreted code, but not so fast as native
machine code. Typically, a single bytecode will execute in 1-2µS on the VM2. A bit of code
like a := a + 1 will take ~4.5µS.

Measuring Execution Times

The following code allows you to measure the execution time of a bit of Venom code.

To measure_time(n,c)
 Local t

574J: Speed of Execution

Copyright © 2009-2021 Venom Control Systems Ltd

 AutoDestruct
 Local stop_watch := New StopWatch

 stop_watch.Reset
 Repeat n
 [
 ;commands to be timed
]
 t := stop_watch.Time As Float
 Print (t / n - c):10:4, " milliseconds", CR
End

The parameter n is the number of times the loop is repeated - increasing it increases the accuracy
of the result. The parameter c is a constant adjustment that is used to take into account the time
taken to execute the Repeat command.

Firstly, the procedure should be run with n = 1000; c = 0 and the Repeat command empty. This
will then print the value to use for c.

Then put the code under test into the Repeat, choose a value of n, and use the value of c you just
found.

K: Optimisation

Optimisation is the automatic or manual alteration of code to make it run faster, occupy less
space, or use less electrical power.

Code Optimisation

The Venom compiler automatically performs some optimisations on the Venom code you write.

Because Venom2 is semi-compiled, the size of the code it produces is typically much smaller
than either assembly code or fully compiled code.

Venom also does some more explicit optimisation. Currently this is limited to constant folding.
Constant folding is where an operation on one or more constants may be calculated at compile
time rather than at run time. For example, the first line could be written as the second, but the
first line may be more understandable and maintainable.

a := 5 * 4
a := 20

When Venom compiles these lines of code, it is able to notice the possible optimisation, and
compiles as if the second line had been written.

Constant folding is performed on most operations. In order to ensure folding happens, enclose
the operations in parentheses:

5 * a * 4 ;will not be folded (the compiler's not that clever!)
5 * 4 * a ;might be… (implementation dependent)
a * 5 * 4 ;might be… (implementation dependent)
a * (5 * 4) ;definitely will be.

575 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

Here is the current list of the operations that may be optimised by constant folding.

+ - * ^ / Div And Or Eor Mod << >>
= >= <= < > <>
IsFalse Inv - negative
As TypeOf for Integer, Float, and String constants & Nil
Sqrt Log Exp Sin Cos Tan Asin Acos Atan

Power saving

The Venom operating system automatically uses the SLEEP instruction on the host processor.
The controller is put into a power-saving mode if there are no tasks requiring any processing
power. Interrupts are not affected as they automatically wake the controller from its SLEEP
instruction.

In order to make best use of this, make your tasks wait if they can do so without compromising
the responsiveness of your code.

For example you could wait for a digital input like this:

While dig.Asserted IsFalse []
However if you don't mind being up to NmS late in the detection of the input you can save
power by using something like

While dig.Asserted IsFalse [Wait N]
The Wait command will let the controller idle while it's waiting.

Await will also allow the controller to sleep while it's waiting, with a minimal loss of
responsiveness

Await dig.Asserted
All commands and messages in Venom that are waiting for an interrupt or for a millisecond time
of any sort will allow the controller to idle. Other things will also allow idling.

Examples are Wait, Every, SWAP, serial.Get, keypad.Get, any_object.
Lock…

You can check the effect of running various bits of code if you have a power supply with a
current meter on it.

Defined logic levels

There are more power savings to be had by making sure that every IO pin on the VM2 is pulled
to a defined logic level. This is most important if you are have a very power sensitive application,
especially one that uses stop mode.

The operating system message system.Low will set all uninitialised IO pins to the state 'input
pulled low' to make sure every uninitialised IO pin is pulled to a defined state.

Usually, the best time to call this is at the end of your init procedure, after all the IO objects have
been defined.

(Your init procedure is called by the default startup procedure).

576L: ASCII Character Set

Copyright © 2009-2021 Venom Control Systems Ltd

L: ASCII Character Set

The following table shows all of the characters in the ASCII character set, giving the decimal
character number, the hexadecimal character number and the character itself. In the case of
unprintable characters, either a description is given, or the box is left blank.

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

 0 0 NUL 32 20 SPC 64 40 @ 96 60 `

 1 1 33 21 ! 65 41 A 97 61 a

 2 2 34 22 " 66 42 B 98 62 b

 3 3 BRK 35 23 £ 67 43 C 99 63 c

 4 4 36 24 $ 68 44 D 100 64 d

 5 5 37 25 % 69 45 E 101 65 e

 6 6 38 26 & 70 46 F 102 66 f

 7 7 BEEP 39 27 ' 71 47 G 103 67 g

 8 8 BS 40 28 (72 48 H 104 68 h

 9 9 41 29) 73 49 I 105 69 i

 10 A LF 42 2A * 74 4A J 106 6A j

 11 B 43 2B + 75 4B K 107 6B k

 12 C FF 44 2C , 76 4C L 108 6C l

 13 D CR 45 2D - 77 4D M 109 6D m

 14 E 46 2E . 78 4E N 110 6E n

 15 F 47 2F / 79 4F O 111 6F o

 16 10 48 30 0 80 50 P 112 70 p

 17 11 XON 49 31 1 81 51 Q 113 71 q

 18 12 50 32 2 82 52 R 114 72 r

 19 13 XOFF 51 33 3 83 53 S 115 73 s

 20 14 52 34 4 84 54 T 116 74 t

 21 15 53 35 5 85 55 U 117 75 u

 22 16 54 36 6 86 56 V 118 76 v

577 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

 23 17 55 37 7 87 57 W 119 77 w

 24 18 56 38 8 88 58 X 120 78 x

 25 19 57 39 9 89 59 Y 121 79 y

 26 1A 58 3A : 90 5A Z 122 7A z

 27 1B Esc 59 3B ; 91 5B [123 7B {

 28 1C 60 3C < 92 5C \ 124 7C |

 29 1D 61 3D = 93 5D] 125 7D }

 30 1E 62 3E > 94 5E ^ 126 7E ~

 31 1F 63 3F ? 95 5F _ 127 7F DEL

578M: Memory Map (VM2)

Copyright © 2009-2021 Venom Control Systems Ltd

M: Memory Map (VM2)

This is a memory map for the VM2 and VM2D controllers, with memory areas drawn to scale.

VM2L

The VM2L controller doesn't have the on-board Flash nor the on-board SRAM fitted. There is

579 Appendix

Copyright © 2009-2021 Venom Control Systems Ltd

no Flash File System. The MPU's internal Flash and SRAM are the only memories available.

Addresses of the memory areas:

Onboard Flash: $60000000
Onboard SRAM: $64000000
MCU SRAM: $20000000
MCU Flash: $08000000

N: Protecting your application

See OperatingSystem.Protect

O: Updating Venom2

There are several ways to update the Venom2 Language & Operating System on a VM2
Controller to the new version .

The first two can only be used if you have the VM2 on the bench in front of you:

1. Use VenomIDE to send the new version over the COM port. This is documented in the
language Release Note and the VenomIDE Help File.

2. Program Mode USB access

There is a third method that can be use to remotely update a VM2 in the field - you will have to
write some Venom code that uses Protect(3). This can also be used on the bench.

S: Serial settings

These are the serial port settings you will need to talk to a VM2's command line from a terminal
emulator:

115Kbd, 8-NONE-1

Or:

Baud rate 115,200

Data bits 8

Parity None

Stop bits 1

580S: Serial settings

Copyright © 2009-2021 Venom Control Systems Ltd

Note: make sure the VM2 is in Program Mode by setting the Prog Mode switch or pulling down
the Prog Mode pin.

Credits

582

Copyright © 2009-2021 Venom Control Systems Ltd

Credits
Venom2 was written by the following people:

Compiler Karl Lam

Runtime system Karl Lam

Operating System Karl Lam

TCP/IP stack Anahata

Filing systems Anahata

Other objects Karl Lam and Anahata

The Venom2 Help File was created by Karl Lam and Anahata.

Venom2 Help File583

Copyright © 2009-2021 Venom Control Systems Ltd

Index

- -
' 27

- - -
- 17

- ! -
! 33

- " -
" 19, 95

- # -
#DEFINE 547

#ELIF 549

#ELSE 549

#ENDIF 549

#IF 549

#REDEFINE 548

#UNDEF 548

- $ -
$ 26

- % -
% 26

- (-
(38

-) -
) 38

- * -
* 18

- , -
, 32

- . -
. 40

- / -
/ 18

- : -
: 28

:= 38

- ; -
; 41

- ? -
? 32

- @ -
@ 36

- [-
[39

-] -
] 39

- ^ -
 ̂ 19

Index 584

Copyright © 2009-2021 Venom Control Systems Ltd

- ~ -
~ 28

- + -
+ 17

- < -
< 22

<< 24

<<< (embedded text) 24

<<<: (embedded text) 24

<= 23

<> 22

- = -
= 21

- > -
> 23

>= 23

>> 24

>>> (embedded text termination) 24

- 1 -
1-Wire Bus 348

- A -
ABS 41

AcceptPrintJob method 165

Accessibility
private 86

protected 87

public 87

AccessPoint object 537

ACOS 42

Active message
TouchScreen: Button 523

Active mode (FTP) 248

Active variable 41
detecting assignment 47

method 60

Address message
Array 130

Ethernet 194

FileSystem 210

HTTP 299

IP 327

SafeData 414

SMS Protocol 443

String Object 458

UDP 478

WifiLink 531

Adjust message
DateTime 169

File System 210

RealTimeClock 405

TouchScreen 508

ALL 42

Alpha LCD 118
cursor 118

AlphaLCD 115

Analogue 119
AD7998, etc 121

MAX1238, etc 121

object 119

on-board 119

PCF8591 122

source impedance 123

AND
bitwise 42

logical 43

AndAlso 43

Any 43

Arc-cosine 42

Arc-Sine 47

Arc-Tangent 47

Array 128
constant 44

multi-dimentional 136

variable 129

AS 46

ASCII 55, 576
Character set, table 576

ASIN 47

Assembler 52

Venom2 Help File585

Copyright © 2009-2021 Venom Control Systems Ltd

Assembler 52
calling 52

Assembler code
calling 564

Asserted message
Digital 182

Keypad 331

OnBoardLED 346

PulseWidthOut 398

TouchScreen 509

TouchScreen: Button 523

Assignment
keyword 47

operator 38

At @ operator 36

ATAN 47

Audio output 124

AUTODESTRUCT 47

Auto-repeat
for Keypad 333

for TouchScreen Buttons 519

number of auto-repetions 519

AWAIT 49

- B -
Background

Text colour padding 273

Backlight control 280

Backspace 51

Base 50

Baud rate setting 432

Becomes equal to 38

BEEP 51

Binary
constants in Venom 26

print formatting 28

Binary executable files 371

Bitmap
drawing on GraphicsLCD 267

embedded in text 290

finding size of 270

macros 270

registering for printing 290

Bitmap message
AlphaLCD 116

GraphicsLCD 267

Bitwise
and 42

exclusive or 65

inversion 73

not 73

or 80

shift left/right 24

Block
of code 39

structure 6

BMP - See VBM (venom bitmap files) 267

Box message
GraphicsLCD 271

BREAK 51

Break up text into lines 149

BS 51

BST - British Summer Time 412

Buffer 134
convert to number 148

object 134

size of, protocols 554

Bus
1-Wire (Dallas) 348

CAN 151

I2C 320

RS485 425

SPI 452

Button
drawing - Venom procedure pointer 524

greyed-out; inactive 523

'key' value 526

label 526

object 522

pressed 523

user-defined elements 524

Button message
TouchScreen 509, 511

Button object 522

- C -
C code

calling 52, 564

Calendar 404

Calendar date calculation 168

Calibrate
real time clock 405

Index 586

Copyright © 2009-2021 Venom Control Systems Ltd

Calibrate
touchscreen 508

Call 52

CanBus 151
Filtering 156

Carat 19

Carriage Return 62

CASE 54

CATCH 99

CENTRE 54, 287

Channel message
AccessPoint 537

Character constant 27

Character Set
ASCII 576

SMS Protocol 437

Checksum
generator 166

Checksum message
OneWire 350

OperatingSystem 356

SafeData 414

CHR 55

Circle 271

Class
accessing global variables 68

Class-default messages 162

Has operator 70

inheritance checking operator 73

interface checking operator: Has 70

structure 13

user-defined class 55

Class keyword 55

Clear screen 62, 287

Clock 404
gearing 376

Real Time Clock 404

real time, calibrate 405

speed, software control 376

Close message
File 238

FTPClient 250

NumberReader 339

POP3 385

PPP 486

TCP 494

UDP 479

CLS 62, 287

Code Example
SMS Protocol 449

Colon 28

Colours 281

Columns
number printing 273

COM Ports 424

Comma 32

comma separated values 474

Comments 41
structure 12

Compare message
AccessPoint 538

String Object 458

Compiler
runtime compilation 363

conditional compilation (#IF, etc) 549

Connect message
Encrypter 187

Ethernet 200

FileSystem 211

WiFiLink 531

Constant 10
character 27

folding 574

macro 547

string 19

string - large 95

types of 10

Contiguous files 234

Control flow
IF 71

SELECT 89

Convert
between INT, FLOAT, Pointer, ... 46

text to number 148

Cookie message
HTTP 300

Copy
files 212

moving/copying memory contents 356

Copy message
Array 131

FileSystem 212

OperatingSystem 356

COS 62

Venom2 Help File587

Copyright © 2009-2021 Venom Control Systems Ltd

Cosine 62

Count message
Ethernet 200

FileSystem 213

OperatingSystem 357

POP3 385

PulseCounter 391

PulseWidthOut 399

Semaphore 422

Shaft 436

TouchScreen 512

CR 62, 287

CRC 166
32-bit 166

CCITT-CRC16 166

MODBUS 166

CRCGenerator 166

Creation
AccessPoint 538

CSV format
reading protocol 474

reading records 241

writing records 164

Ctrl-C Break 426

Cursor
AlphaLCD 118

Move around display 287

moving 69

Cursor movement
GraphicsLCD 288

Cursor position
GraphicsLCD 286

- D -
Data structures 8

all 8

array: constant 44

array: variable 128

Buffer of Any 136

Buffer, text buffer 134

String object 456

Data type
conversion 46

floating point 68

integer 73

Datagrams 477

Date 168
DateTime object 168

Real Time Clock 404

Date stamp
file 224

DateTime 168

Day message
DateTime 171

DayOfWeek message
DateTime 171

Deadlock 94

Debug message
CANBus 153

Ethernet 200

FileSystem 214

FTPClient 250

FTPServer 256

HTTPServer 301

OperatingSystem 357

PID Controller 383

PPP 487

SMS Protocol 442

SMTP 451

TCP 494

UDP 479

WifiLink 532

DEFINE 547

Delete
command 63

File System 216

files 222

macros 548

Dereference pointer 33

Derived 63

Development
checklist 564

DHCP 193
Ethernet 194

Dial up
example code 555

Die message 114
all objects - general discussion 114

Array 131

Buffer 138

Class-default 163

I2CBus 321

PulseWidthOut 402

Index 588

Copyright © 2009-2021 Venom Control Systems Ltd

Die message 114
SerialPort 426

Task 467

TCP 496

Digital 177
I2C (PCF8574) 180

On-board 178

Display
Alphanumeric 115

Graphic 261

Distribute
application code 232

DIV 64

Divide
Floating point 18

Integer 64

DO 64

Dollar 26

Done message
File System 215

PulseWidthIn 394

Task 467

Timer 504

Dot operator 40

Dotted quad
converting to integer 327

printing integer as 30

Use in IP addresses 554

Download
source code 85

Venom language 579

Draw message
TouchScreen: Button 524

DST - Daylight Saving Time 412

Dump
heap 362

memory contents 357

stack 362

- E -
EEPROM 412

Element message
Array 132

Buffer 139

CANBus 154

File 238

POP3 385

RealTimeClock 407

SafeData 418

String object 459

TouchScreen: Button 524

ELSE 64

Email 384, 450
fetching 384

sending 450

Embedded
text 95

Embedded text 24

Empty message
Buffer 139

File 238

File System 216

NumberReader 339

SerialPort 426

SMS Protocol 443

String object 460

UDP 479

Encrypter 185

END 65

EOR 65

Equal
assignment 38

equality expression 21

Equality
equal 21

not equal 22

Erratum
tutorial 13

Error
messages, table 565

error handling 99

ErrorAction message
OperatingSystem 368

Escape
character 27

character in strings 20

Escape message
SerialPort 426

Ethernet 191
setMAC address 198

Event message
TouchScreen 512

EVERY 66

Venom2 Help File589

Copyright © 2009-2021 Venom Control Systems Ltd

Example code
TCP/IP 555

Exception generation 66

exception handling 99

Exclamation mark operator 33

Exclusive OR 65

Executable files 371

EXIT 66
loop 51

EXP 67

Exponential 67

- F -
FALSE 68

FAQ 567

FIFO 134

File 236
close 238

copy 212

delete 222

empty (remove contents) 238

length 243

length remaining 245

name 243

open 219

random access 238

read 239

read point 245

rename 219

rewind 245

search text 239

size 218

timestamp (of file by name) 224

timestamp (of open file) 245

write 244

file name matching 229

File System 204
compact/defragment 210

connect to USB 211

connect via serial port 211

copy file 212

create 205

debug information 214

file address in memory 210

find file 216

Flash, internal 208

flush cache 217

free space 217

list 226

number of files 213

progress indication 215

RAM disk 207

remove all files 216

reset 222

SD card 205

status 223

timestamp of file by name 224

USB - external device 209

validation 224

File transfer
over serial port 211

over USB 211

File Transfer Protocol 254

Files
contiguous in memory 234

number of 213

transfer, XMODEM 541

Filesystem 204

FILO 134, 143

Find message
Array 132

Buffer 140

File 239

FileSystem 216

I2CBus 322

IP 328

OneWire 351

String object 460

TextAnalyser 471

TouchScreen 513

UDP 479

WiFiLink 533

Firmware update 579

Flags
runtime 357

Flash file system 208

Flash memory
protect application in 371

Flash message
OnBoardLED 346

FLOAT 68

Floating I/O - find and set to defined state 369

Floating point

Index 590

Copyright © 2009-2021 Venom Control Systems Ltd

Floating point
conversion 68

number from text 148, 469

precision 572

Flush message
Buffer 143

FileSystem 217

HTTP 302

Keypad 332

String object 461

TCP 497

XMODEM 543

Font
changing 68

data formats 276

defining new 275

pre-defined 289

FONT print keyword 68

FontData message
GraphicsLCD 275

Foreign code 52
calling 564

FOREVER 68

Format
DateTime print output 174

font data 276

RealTimeClock print output 412

Format message
GraphicsLCD 273

HTTP 302

SerialPort 426

SMS Protocol 443

Formatting 28
binary 28

floating point numbers 30

hexadecimal 28

integers 29

IP dotted-quad style 30

objects 31

PrintF 110

strings 31

Free message
CanBus 155

FileSystem 217

OperatingSystem 369

SerialPort 427

String object 461

TCP 497

XMODEM 544

FTP 248

FTPClient 248

FTPServer 254

Function 88

- G -
Garbage collection

AUTODESTRUCT attribute 47

Buffer of Any 138

description 8

garbage scanner 360

Get message
Buffer 143

CanBus 155

CRCGenerator 167

Encrypter 187

File 239

FTPClient 251

HashGenerator 292

HTTP 304

I2CBus 322

Keypad 332

OneWire 352

PrintJob 388

RandomNumberGen 403

SafeData 419

Semaphore 422

SerialPort 427

SMS Protocol 444

String object 461

TCP 497

TextAnalyser 471

UDP 480

XMODEM 545

GetLast message
Buffer 143

Keypad 332

RealTimeClock 406

TextAnalyser 475

Global name assertion 68

Global variable 10

Global variables
accessing insde a Class method 68

Glossary 568
networking 553

Venom2 Help File591

Copyright © 2009-2021 Venom Control Systems Ltd

GMT 412

Go message
FTPClient 251

FTPServer 257

IP 329

PulseWidthIn 394

PulseWidthOut 399

Timer 505

GOTOXY 69, 287

GPRS 484

GraphicsLCD 261
backlight control 280

text cursor position 286

Greater than 23

GSM 7 bit characters
SMS Protocol 437

GUI
graphical displays 261

touchscreen input 507

- H -
Half-duplex 429

handle
errors and exceptions 99

Handshake message
SerialPort 428

Has operator 70

HashGenerator 291

Heap
dump 362

Height message
TouchScreen: Button 525

HELP 70
File 246

Hexadecimal
constants in Venom 26

number from keypad 338

number from text 469

print formatting 28

High message
Digital 183

OneWire 353

HOME 70, 287

Hour message
DateTime 172

HTAB 287

HTML
embedded in venom code files 95

embeddeding in Venom 24

HTTP 293

HTTP minimal web server 295

HTTPServer 293

- I -
I2C Bus 320

repeated start condition 325

software based bus 325

IF 71

Impedance
analogue input 123

INDEX 72

INDEX0 72

Inheritance 59
checking - 'Is' operator 73

of a Venom base class 61

INI file format
reading 241

writing 164

Input stream
tokenise 469

InputBuffer message
Keypad 333

TextAnalyser 476

Insert message
Buffer 144

INT 73

Integer
max, min values 572

number from text 148, 469

Interface
User Class, 'Has' operator 70

INV: bitwise inversion operator 73

Inverse
bitwise 73

logical 74

Invert colour 281

IP 326

IProt 326

Is operator 73

IsFalse 74

Index 592

Copyright © 2009-2021 Venom Control Systems Ltd

- J -
Jumping out of nested loops 66

Justification 287
CENTRE 54

LEFT 75

RIGHT 88

- K -
Key message 330

AccessPoint 539

Encrypter 188

Keypad 334

OperatingSystem 369

TouchScreen 513

TouchScreen: Button 526

Keypad 330

Killing objects 114

- L -
LAN 191

language 2, 4

Lazy
and 43

or 81

LCD
Alphanumeric 115

Graphic 261

LCD PWM backlight control 280

Leak
detector, for memory leaks 360

LED 345

LEFT 75, 287

Length message
"string constant" 19

Array 133

Buffer 144

Class-default 163

File 243

Filesystem 218

NumberReader 339

POP3 386

SMS Protocol 445

String object 461

UDP 481

Less than 22, 23

Line message
GraphicsLCD 280

RealTimeClock 407

Line of text
read from serial port 427

Lines
break up text into 149

LIST 75
keywords 357

memory contents 357

LOCAL 75

Locale
day and month names 365

decimal point character 359

Lock
Semaphore 421

Lock message
any object 108

Semaphore 423

LOG 76

Logarithm 76

Logical
and 43

not 74

or 81

longjmp(), equivalent 66

Look message
CanBus 156

SerialPort 430

TextAnalyser 476

Looping
DO 64

EVERY 66

FOREVER 68

INDEX 72

loop count, automatic 72

REPEAT 87

WHILE 104

Low message
Digital 183

OneWire 353

OperatingSystem 369

Low Power Mode
Stop Mode 409

Venom2 Help File593

Copyright © 2009-2021 Venom Control Systems Ltd

- M -
MAC address 191

Set 198

Macros 547
redefine 548

undefine, remove 548

Magnitude 41

MAKE 77
AlphaLCD 115

Analogue 119

Array 129

Buffer 135

CanBus 153

CRCGenerator 166

DateTime 169

Digital 178

Encrypter 186

Ethernet 191

FileSystem 205

FTPClient 249

FTPServer 256

GraphicsLCD 262

HashGenerator 292

HTTP 299

I2CBus 321

IP 327

Keypad 330

NIL 338

NumberReader 338

OnBoardLED 346

OneWire 350

OperatingSystem 356

PID Controller 381

POP3 385

PPP 485

PulseCounter 390

PulseWidthIn 392

PulseWidthOut 397

RandomNumberGen 403

RealTimeClock 405

SafeData 413

Semaphore 422

SerialPort 425

Shaft 435

SMS Protocol 442

SMTP 451

SPI 453

Stopwatch 465

String object 457

Task 467

TCP 493

TextAnalyser 470

Timer 504

Touchscreen 507

UDP 478

WiFiLink 529

XMODEM 542

Map
of VM2 memory 578

Mapping message
CanBus 156

HTTPServer 318

NumberReader 340

TouchScreen 515

Match message
HTTPserver 304

Maximum integer 572

Memory
direct access 32

dump contents 357

leak detector 360

moving/copying contents 356

Memory map 578

Memory pointer
to file 210

Message
indirect message send 35

reference to message ('message pointer') 37

send message (dot) 40

Message redirection 61

Method
active variable 60

Methods 57

Minimum integer 572

Minus 17

Minute message
DateTime 172

MOD 77

MODBUS CRC 166

Modem 484

Modulo 77

Monospaced 289

Monospaced text 273

Index 594

Copyright © 2009-2021 Venom Control Systems Ltd

Month message
DateTime 172

Move
moving/copying memory contents 356

Multi-bit ports
creation 181

reading and writing 184

Multicast
Ethernet 194

Multiply 18

Multitasking
description 8

disable 360

language structure 13

switching off 467

switching on 468

syntax 90

use with network protocols 554

- N -
Name message

AccessPoint 539

Class-default 164

File 243

FileSystem 219

FTPClient 252

HTTP 305

PPP 488

TouchScreen: Button 526

Name scope
global scope assertion 68

local names take precedence 75

member name scope assertion 97

Names
declaration (local) 75

scope 7

Networking
guide 553

NEW 78

New features 13

NIL 79, 337

No operation 80

Non-proportional text 273

Non-volatile storage
EEPROM 412

STM32 backup registers 407

NOP 80

Not operator
bitwise 73

logical 74

Notes on Operation
FTPServer object 258

Notes on Using File Systems
File Systems 228

Nothing 79

Number
input from keypad 338

input from text 148, 469

limits 572

Number entry
PIN 341

secret 341

NumberReader 338

Numbers
printing in columns 273

- O -
Object

creation 78

Object orientation 7

objects 6

Off message
CanBus 158

Digital 183

ethernet 201

GraphicsLCD 280

OnBoardLED 347

PulseWidthOut 399

SPI 455

Task 467

On message
CanBus 158

Digital 183

ethernet 202

GraphicsLCD 280

OnBoardLED 347

PulseWidthOut 399

SPI 455

Task 468

OnBoardLED 345

OneWire Bus (Dallas) 348

Open

Venom2 Help File595

Copyright © 2009-2021 Venom Control Systems Ltd

Open
file 219

Open message
FileSystem 219

FTPClient 252

POP3 386

PPP 489

TCP 499

UDP 481

Operating System 355

OperatingSystem object 355

Operator
precedance 572

Optimisation 574

Optional
parameters 39

parameters count 81

OR
bitwise 80

logical 81

OrElse 81

Output message
HTTPserver 307

NumberReader 341

OperatingSystem 370

OutputBuffer message
SerialPort 430

Overlay
code 363

Owner message
any object 108

Semaphore 423

- P -
ParamCount 81

Parameter - keyword 82

Parameter list
actual 39

formal 39

get parameter by index 82

optional parameters in Venom procedures 39

Parenthesis 38

Parity 426

Parse text 469

Passive mode (FTP) 248

password

PPP 488

Pen message
GraphicsLCD 281

Percent 26

Period message
Analogue 123

HTTP 308

IP 329

Keypad 336

PPP 489

PulseWidthIn 394

PulseWidthOut 399

Timer 505

PID Controller 379

PIN entry 341

Ping
example code 555

Pling 33

Plus 17

Pointer
creation 36

dereference (follow) 33

procedure - create 37

procedure - dereference 33

to a message / method 37

POP3 384

Ports
create multi-bit 181

reading and writing multi-bit 184

Power consumption
minimising 410

Power of (̂operator) 19

PPP 484

Precision
floating point 572

Pre-processor
conditional compilation 549

macros (#define) 547

Print
"string constant" 31

AccessPoint 540

general 9

HashGenerator 293

PPP 491

PRINT command 83

PRINT TO - print redirection 84

redirection 99, 370

Index 596

Copyright © 2009-2021 Venom Control Systems Ltd

Print
WiFiLink 536

PRINT message
Analogue 127

Array 134

Buffer 150

Class-default 164

DateTime 174

Digital 185

Ethernet 203

File 247

FileSystem 226

formatting 28

FTPClient 253

HTTP 315

I2CBus 325

IP 329

NumberReader 345

OnBoardLED 347

OneWire 354

OperatingSystem 379

POP3 387

PulseCounter 391

PulseWidthIn 396

PulseWidthOut 402

RandomNumberGen 404

RealTimeClock 412

SafeData 421

Semaphore 424

Shaft 437

SMS Protocol 449

Stopwatch 466

String object 464

Task 469

Timer 506

TouchScreen: Button 527

PRINT TO message
AlphaLCD 118

Buffer 149

Class, user defined 165

DateTime 174

Enrypter 190

File 247

GraphicsLCD 287

HTTP 316

NumberReader 344

ppp 492

RealTimeClock 411

SerialPort 434

SMS Protocol 448

String object 464

TCP 503

UDP 484

PrintF
command 105

TextBlock format string in HTTP 316

PrintF message
[for all objects] 110

Class-default 165

PrintJob object 387

Private 86

Procedure
entering 98

pointer 37

pointer - dereference 33

stack 13

structure 12

Production programming of VM2s 232

PROGRAM 85

Programming
production programming of VM2s 232

Progress indication
file operations 215

ProtAnalyser 469

Protect message
AccessPoint 540

OperatingSystem 371

WiFiLink 534

Protected 87

Protected Application Area 371

Protocol
analyser 469

Public 87

Pulse generation 396

Pulse measurement 391

Pulse message
Digital 184

PulseCounter 389

PulseWidthIn 391

PulseWidthOut 396

Put message
AlphaLCD 117

Buffer 144

CanBus 159

CRCGenerator 167

Venom2 Help File597

Copyright © 2009-2021 Venom Control Systems Ltd

Put message
Encrypter 189

File 244

FTPClient 250

HashGenerator 293

HTTP 309

I2CBus 323

NumberReader 342

OneWire 353

SafeData 420

Semaphore 423

SerialPort 431

SPI 456

String object 461

TCP 501

UDP 481

XMODEM 544

PWM
input 391

output 396

VM2-D2 backlight signal 280

- Q -
Quadrature 434

Query operator 32

Question mark 32

Queue message
Analogue 124

Buffer 145

CanBus 160

Encrypter 190

File 245

HTTP 311

Keypad 336

PrintJob 388

PulseWidthOut 400

SerialPort 432

String Object 462

TCP 501

TextAnalyser 476

UDP 483

XMODEM 544

Quote
double 19

single 27

- R -
RAM File system 207

Random numbers 402

RandomNumberGen 402

Read
from memory 32

line of text from serial port 427

Read a number
from a string 463

Readpoint message
Buffer 145

File 245

String Object 462

Real Time Clock 404
calibrate 405

RealTimeClock 404
creation 405

Records
retreiving from file 239

retreiving from SafeData 419

storing in file 244

storing in SafeData 420

Recursion 571

REDEFINE 548

Redefining macros 548

Redirect
HTTPServer 310

Redirection
all output 370

PRINT output 99

Reference
to a message ('message pointer') 37

Reformat
File System 216

Register - write to directly
AlphaLCD 118

Remove message
Buffer 146

FileSystem 222

FTPClient 252

POP3 387

SMS Protocol 446

TouchScreen 518

Removing objects 114

Rename

Index 598

Copyright © 2009-2021 Venom Control Systems Ltd

Rename
file 219

REPEAT 87

Repeated Start Condition
I2C Bus 325

Reset
source of last reset 362

Reset message
AlphaLCD 117

Buffer 146

CRCGenerator 168

File 245

FileSystem 222

GraphicsLCD 284

HashGenerator 293

I2CBus 324

NumberReader 343

OneWire 354

OperatingSystem 375

PID Controller 383

PPP 491

PulseCounter 391

RandomNumberGen 404

RealTimeClock 409

SafeData 420

Shaft 436

Stopwatch 465

String object 462

TCP 501

TextAnalyser 476

Timer 505

XMODEM 545

Result 88

RETURN 88

RIGHT 88, 287

Robust applications 563

ROMing applications 563

RS232 424

RS485 424, 429

RTC 404

Run message
FTPServer 257

OperatingSystem 375

Runmode message
OperatingSystem 376

Runtime error
improving line number accuracy 80

messages, table of 565

- S -
SafeData 412

records 419, 420

Scan for access points (Wifi) 533

SD Card 205

Second message
DateTime 172

Secret number entry 341

SELECT 89
Case 54

Semaphore 421

Semicolon 41

Send message
Analogue 124

I2CBus 324

SMS Protocol 447

SMTP 452

UDP 482

Serial FTP 211

Serial port settings 579

Serial ports 424

SerialPort 424

setjmp(), equivalent 99

Settings
terminal 579

SHA-2 291

SHA-256 291

Shaft 434

Shaft encoder 434

Shift - bitwise 24

Signal Strength 536

SIN 90

Sine 90

Sleep 409

SMS
Protocol Object 437

SMTP 450

Sort message
Array 133

Buffer 146

Sounds - playing 124

Source file annotation 85

Source impedance

Venom2 Help File599

Copyright © 2009-2021 Venom Control Systems Ltd

Source impedance
analogue input 123

Speed
execution, of code 573

Speed message
CanBus 160

OperatingSystem 376

PulseWidthIn 395

PulseWidthOut 401

SerialPort 432

SPI 452

SQRT 90

Square brackets 39

Square root 90

Stack 134
dump 357, 362

overflow 571

set task stack size 364

user 143

Venom 13

START 90
Task object 467

Startup
sequence 562

State message
Task 468

Statements 11

Status message
CanBus 161

Ethernet 202

FileSystem 223

PrintJob 388

TCP 502

WifiLink 535

STOP 91

Stop bits 426

Stop Mode 409

Stopwatch 465

String 456
blocks of text 24, 95

capacity - find 461

compare 458

concatenate 461, 464

constant: "quoted string" 19

convert to number 148, 469

extract a substring 464

find a substring 460

handling - general discussion 8

object 456

variable 456

SWAP 93

switch statement - equivalent in Venom2 89

Syntax descriptions
keywords 16

objects 107

System
OperatingSystem object 355

- T -
Tab

GraphicdLCD, explicit CR depth 273

GraphicsLCD - horizontal and vertical 288

TAN 93

Tangent 93

Task
blocking 94

deadlock 94

listing active tasks 94

number of tasks 359

object 467

reinstate task switching 468

stack use 364

starting 90

state variable 468

stop task switching 467

stopping 91

swapping 93

TCP 493

TCP/IP 326, 493
example code 555

Notes 554

TCProt 493

Terminal settings 579

TestLock message
any object 108

Semaphore 423

Text
append 567

break into lines 149

buffer 134

convert to number 148, 463, 469

divide into lines 567

embedded 95

Index 600

Copyright © 2009-2021 Venom Control Systems Ltd

Text
embedding 24

find string within 567

handling 567

in-line 95

insert 567

manipulation 134

substring - extract 567

Text clipping 273

Text cursor
GraphicsLCD 286

TextAnalyser 469

TextBlock 95

TextBox message
GraphicsLCD 284

THEN 97

This 97

Tilda 28

Time message
DateTime 173

Ethernet 203

File 245

FileSystem 224

IP 329

Keypad 336

OperatingSystem 378

RealTimeClock 409

SMS Protocol 448

Stopwatch 465

Timer 505

TouchScreen 519

UDP 482

Time zones 412

Timeout message
FTPClient 253

RealTimeClock 409

SerialPort 433

TCP 502

TouchScreen 519

Timer obejct 504

Timestamp
of file by name 224

of open file 245

Timing
Stopwatch 465

Timer 504

TO 98

Toggle message
Digital 184

OnBoardLED 347

Token
read 469

Touchscreen 507
events 512

position of touch 521

sensitivity 520

Transparent colour 281

TRUE 99

TRY 99

Tutorial
additions and corrections to first edition 13

Type
checking - 'Is' operator 73

conversion 46

finding the type of a value 101

Typeface 68

TypeOf operator 101

Types
weakly-typed language 6

- U -
UART 424

UDP 477

UNDEF 548

Unlock message
any object 108

Semaphore 423

Unsigned 103

Unused I/O - define logic states 369

Update
File 246

Venom language 579

Update message
DateTime 173

GraphicsLCD 285

Keypad 337

PID Controller 383

Upgrade
Venom language 579

USB
access to Flash File System 232

access to Flash File System - runtime 211

VM2 as mass storage device 232

Venom2 Help File601

Copyright © 2009-2021 Venom Control Systems Ltd

USB external file system 209

user name
PPP 488

- V -
Valid message

DateTime 173

Ethernet 202

FileSystem 224

HTTP 312

OperatingSystem 379

PPP 491

RealTimeClock 411

SerialPort 433

TCProt 502

TextAnalyser 477

WifiLink 535

Value message
AccessPoint 540

AlphaLCD 118

Analogue 127

Buffer 148

CanBus 162

CRCGenerator 168

Digital 184

HTTP 313

NumberReader 344

PID Controller 383

RandomNumberGen 404

String object 463

Touchscreen 520

WiFiLInk 536

Variables
active 41

global 10

local 10, 75

names 10

scope 7

VBM - Venom Bitmap files 267

Venom2
description 6

Venom-SC
language structure 9

Version
read as integer 357

vfu files 371

VTAB 287

- W -
WAIT 103

Waiting
AWAIT 49

WAIT 103

Wake from Stop Mode 407

WAV files 124

Web server 293, 554

WHILE 104

Width message
NumberReader 344

PulseWidthOut 401

TouchScreen: Button 526

WiFi security 534

WifiLink object
WifiLink 527

wildcard 229

Wireleless Networking 527

WORD 104

Word wrapping (GraphicsLCD.Format) 273

Write
to memory 32

Write protection
internal flash - setting, reading 365

- X -
XMODEM 541

XOFF 428

XON 428

XPos message
GraphicsLCD 286

Touchscreen 521

TouchScreen: Button 527

- Y -
Year message

DateTime 173

YPos message
GraphicsLCD 286

Touchscreen 521

TouchScreen: Button 527

Index 602

Copyright © 2009-2021 Venom Control Systems Ltd

- Z -
Zero Power 409

Zero-memory objects 114

	Venom2 Help
	How to use this help file
	Language Overview
	Description
	Language Structure
	New Features

	Language Keywords
	+
	-
	*
	/
	^
	"
	=
	<>
	<
	>
	<=
	>=
	<< >> (Bit shift)
	<<<: >>> (Embedded text)
	$
	%
	'
	~
	: Colon
	Formatting Integers
	Formatting Floats
	IP dotted-quad formatting
	Formatting Objects
	Formatting strings

	,
	?
	!
	@
	:=
	()
	[]
	. [Dot]
	; [Comment]
	Abs
	Acos
	All
	And
	AndAlso
	Any
	Array
	As
	Asin
	Assignment
	Atan
	AutoDestruct
	Await
	Base
	Beep
	Break
	BS
	Call
	Case
	Catch
	Centre
	Char
	Chr
	Class
	Class - defining
	Active Variable Methods
	Message redirection

	Cls
	Cos
	CR
	Delete
	Derived
	Div
	Do
	Else
	End
	Eor
	Every
	Exit
	Exp
	False
	Float
	Font
	Forever
	Global
	GotoXY
	Has
	Help
	Home
	If
	Index and Index0
	Int
	Inv
	Is
	IsFalse
	Left
	List
	Local
	Log
	Make
	Mod
	New
	Nil
	Nop
	Or
	OrElse
	ParamCount
	Parameter
	Print
	Program
	Private
	Protected
	Public
	Repeat
	Return
	Right
	Select
	Sin
	Sqrt
	Start
	Stop
	Swap
	Tan
	Task
	TextBlock
	Then
	This
	To
	True
	Try
	TypeOf
	Unsigned
	Wait
	Word
	While
	PrintF

	Object Types
	Locking
	PrintF
	Common object properties
	AlphaLCD
	Creation
	Bitmap
	Put
	Reset
	Value
	Accepting Print

	Analogue
	Creation
	On-board
	AD7998, etc
	MAX1236, etc
	PCF8591

	Period
	Queue
	Send
	Value
	Printing

	Array
	Creation
	Address
	Copy
	Die
	Element
	Find
	Length
	Sort
	PRINT

	Buffer
	Creation
	Die
	Element
	Empty
	Find
	Flush
	Get
	GetLast
	Insert
	Length
	Put
	Queue
	ReadPoint
	Remove
	Reset
	Sort
	Value
	Accepting Print
	Printing

	CANBus
	Creation
	Debug
	Element
	Free
	Get
	Look
	Mapping
	Off
	On
	Put
	Queue
	Speed
	Status
	Value

	Class-default
	Die
	Length
	Name
	Print
	PrintF

	CRCGenerator
	Creation
	Get
	Put
	Reset
	Value

	DateTime
	Creation
	Adjust
	Day
	DayOfWeek
	Hour
	Minute
	Month
	Second
	Time
	Update
	Valid
	Year
	Accepting Print
	Print

	Digital
	Creation
	On-board
	I2C Bus

	Asserted
	High
	Low
	Off
	On
	Pulse
	Toggle
	Value
	Printing

	Encrypter
	Creation
	Connect
	Get
	Key
	Put
	Queue
	Accepting Print

	Ethernet
	Creation
	Address
	Connect
	Count
	Debug
	ErrorAction
	Off
	On
	Status
	Valid
	Time
	PRINT

	FileSystem
	Creation
	SD Card Creation
	RAM FS Creation
	Flash FS Creation
	USB FS Creation

	Address
	Adjust
	Connect
	Copy
	Count
	Debug
	Done
	Find
	Empty
	Flush
	Free
	Length
	Name
	Open
	Remove
	Reset
	Status
	Time
	Valid
	PRINT
	Notes on Using File Systems
	USB access to Flash File System
	Contiguous Files

	File
	Creation
	Close
	Element
	Empty
	Find
	Get
	Length
	Name
	[Open]
	Put
	Queue
	Readpoint
	Reset
	Time
	Update
	Help
	PRINT TO
	PRINT

	FTPClient
	Creation
	Put
	Close
	Debug
	Get
	Go
	Name
	Open
	Remove
	Timeout
	PRINT

	FTPServer
	Creation
	Debug
	Run, Go
	Notes on FTP

	GraphicsLCD
	Creation
	Bitmap
	Box
	Format
	FontData
	Font data formats

	Line
	Off
	On
	Pen
	Reset
	TextBox
	Update
	Xpos, Ypos
	PRINT TO

	HashGenerator
	Creation
	Get
	Put
	Reset
	PRINT

	HTTPServer
	Notes on Use
	Creation
	Address
	Cookie
	Count
	Debug
	Flush
	Format
	Get
	Match
	Name
	Output
	Period
	Put
	Redirect
	Queue
	Valid
	Value
	PRINT
	PRINT TO
	Mapping

	I2CBus
	Creation
	Die
	Find
	Get
	Locking
	Put
	Reset
	Send
	Printing
	Software based driver

	IProt
	Creation
	Address
	Debug
	Find
	Go
	PRINT
	Time, Period

	Keypad
	Creation
	Asserted
	Flush
	Get
	GetLast
	InputBuffer
	Key
	Period
	Queue
	Time
	Update

	NIL
	Creation

	NumberReader
	Creation
	Close
	Empty
	Length
	Mapping
	Output
	Put
	Reset
	Value
	Width
	Accepting Print
	Printing

	OnBoardLED
	Creation
	Asserted
	Flash
	Off
	On
	Toggle
	Printing

	OneWire
	Creation
	Checksum
	Find
	Get
	High
	Low
	Put
	Reset
	PRINT

	OperatingSystem
	Creation
	Checksum
	Copy
	Count
	Debug
	ErrorAction
	Free
	Key
	Low
	Output
	Protect
	Reset
	Run
	RunMode
	Speed
	Time
	Valid
	PRINT

	PIDController
	Creation
	Debug
	Reset
	Value
	Update

	POP3Mailbox
	Creation
	Close
	Count
	Element
	Length
	Open
	Remove
	PRINT

	PrintJob
	Get
	Queue
	Status

	PulseCounter
	Creation
	Count
	Reset
	Printing

	PulseWidthIn
	Creation
	Done
	Go
	Period
	Speed
	PRINT

	PulseWidthOut
	Creation
	Asserted
	Count
	Off
	On, Go
	Period
	Queue
	Speed
	Width
	Printing
	Die

	RandomNumberGen
	Creation
	Get
	PRINT
	Reset
	Value

	RealTimeClock
	Creation
	Adjust
	GetLast
	Element
	Line
	Reset
	Time
	Timeout
	Valid
	Accepting Print
	Printing

	SafeData
	Creation
	Address
	Checksum
	Element
	Get
	Put
	Reset
	PRINT

	Semaphore
	Creation
	Count
	Get
	Put
	Lock
	Owner
	TestLock
	Unlock
	PRINT

	SerialPort
	Creation
	Die
	Empty
	Escape
	Format
	Free
	Get
	Handshake
	Look
	OutputBuffer
	On
	Put
	Queue
	Speed
	Timeout
	Valid
	Accepting Print

	Shaft
	Creation
	Count
	Reset
	Printing

	SMSLink
	Character Set
	Creation
	Debug
	Address
	Empty
	Format
	Get
	Length
	Remove
	Send
	Time
	Accepting Print
	PRINT
	Code Example

	SMTPSender
	Creation
	Debug
	Send

	SPI
	Creation
	Off
	On
	Put

	String object
	Creation
	Address
	Compare
	Element
	Empty
	Find
	Flush
	Free
	Get
	Length
	Put
	Queue
	Readpoint
	Reset
	Value
	Accepting Print
	Printing

	Stopwatch
	Creation
	Reset
	Time
	Printing

	Task
	Creation
	Die
	Done
	Off
	On
	State
	PRINT

	TextAnalyser
	Creation
	Find
	Get
	Reading numbers
	Reading strings

	GetLast
	InputBuffer
	Look
	Queue
	Reset
	Valid

	UDProt
	Creation
	Address
	Close
	Debug
	Empty
	Find
	Get
	Length
	Open
	Put
	Send
	Time
	Queue
	Print
	PRINT TO

	PPProt
	Creation
	Close
	Count
	Debug
	Mapping
	Name
	Open
	Period
	Timeout
	Valid
	Reset
	PRINT
	PRINT TO
	Code Example

	TCProt
	Creation
	Close
	Debug
	Die
	Flush
	Free
	Get
	Open
	Put
	Queue
	Reset
	Status
	Timeout
	Valid
	PRINT TO

	Timer
	Creation
	Done
	Go
	Period
	Reset
	Time
	Printing

	TouchScreen
	Creation
	Adjust
	Asserted
	Button - create
	Button - get
	Count
	Event
	Find
	Key
	Mapping
	Remove
	Time
	Timeout
	Value
	XPos
	YPos

	TouchScreen: Button
	Active
	Asserted
	Draw
	Element
	Height
	Name
	Key
	Width
	XPos
	YPos
	Print

	WiFiLink
	Creation
	Address
	Connect
	Debug
	ErrorAction
	Find
	Protect
	Status
	Valid
	Value
	Print
	AccessPoint
	Channel
	Creation
	Compare
	Key
	Name
	Value
	Protect
	Print

	XMODEMLink
	Creation
	Flush
	Free
	Put
	Queue
	Reset
	Get

	Pre-processor commands
	#Define, etc
	#If, etc

	TCP/IP Networking
	Notes on TCP/IP
	IP Addresses
	Example Code
	Glossary

	Appendix
	A: Startup Sequence
	B: Robust applications
	C: Calling foreign code
	D: Development Checklist
	E: Error messages
	F: FAQ
	G: Glossary
	H: Number Limits
	I: Operator Precedence
	J: Speed of Execution
	K: Optimisation
	L: ASCII Character Set
	M: Memory Map (VM2)
	N: Protecting your application
	O: Updating Venom2
	S: Serial settings

	Credits

