
Application Note:
Data Logging with the Memory Card File
System

Data Logging with Flash Memory File Systems
A common use for Micro-Robotics products is data logging, made possible by Venom's file system
support for either RAM disk, the VM2's on board flash memory or a memory card interface, like
the one on Application Board 2 (product 5902). However the nature of flash memory and filing
systems needs to be taken into account when designing systems for maximum reliability and
lifetime. This application note sets out best practices for each media type and also offers an
approach for systems where a memory card is likely to be manually removed.

Summary of File System Capabilities
Media Capacity Write wear Cache Speed R/W
RAM 900KB max None n/a fast/fast

On Board Flash 7MB yes, no wear levelling 2x64K non-volatile fast/slow
Memory Card 32GB max yes, but mitigated by

wear levelling
5K-100K volatile slow/slow

Write Wear in Flash Memory
All flash memory devices have a limited number of write cycles to each page in memory. For
example a San Disk MMC datasheet specifies 300,000 write cycles, which implies that non-stop
periodic updates would give approximate card lifetimes as follows:

Update period Card Lifetime Update period Card Lifetime
1 second 3 days 2 minutes 1 year

10 seconds 1 month 10 minutes 5 years
1 minute 6 months

However, memory cards use a technique called wear levelling to maximise the lifetime of the card
by remapping blocks and spreading rewrites evenly throughout the memory. The performance of
the wear levelling algorithms is difficult to predict as their detailed operation is made public and
they probably depend on file system usage patterns and the internal structure of the memory card.
However, it seems likely that using a small fraction of a large capacity card would enable wear to
be spread widely and thus improve the lifetime of the card.

The internal flash memory used by the VM2 is also subject to write wear, and of course is more
expensive and cumbersome to replace (you have to replace the whole VM2 card). It also doesn't
have any wear levelling, but Venom uses a non-volatile RAM cacheing scheme that can

WARNING: Users of Micro-Robotics Control Equipment should be aware of the possibility of a system failure, and must consider the implications
of such failure. Micro-Robotics Ltd. can accept no responsibility for loss, injury, or damage resulting from the failure of our equipment. Use of our
products in applications where their failure to perform as specified could result in injury or death is expressly forbidden.

© copyright 2006 Micro-Robotics Ltd tel: +44 (0) 1223 523100
The Old Maltings fax: +44 (0) 1223 524242
135 Ditton Walk sales@microrobotics.co.uk
Cambridge www.microrobotics.co.uk
CB5 8QB

D026 V20110616 Data Logging with Memory Cards Page 1

dramatically reduce the amount of writing to the flash memory.

The Flush Message
Both memory card and on board flash use cache memory in RAM to hold recently accessed blocks
of data. When writing, data is written to the cache memory first, and later the cache block is written
to the actual media (memory card or flash memory). A Flush message sent to the file system
object forces all such data to be written immediately, bringing the storage media up to date.
However there are conflicting requirements: to minimize the loss of data if the power fails, and to
minimise write wear on the storage media.The criteria for when and how often to use the flush
message are different for memory cards and the on board flash.

Memory Cards – Best Practice

1. Writing Infrequently to a Card
If you are writing a batch of data to a file once per minute or less frequently:

1. Open file

2. Write updates to file

3. Close File

4. Send a Flush message to File System

2. Writing Frequently or Continuously To a File or Files
Start a separate task to flush the file system periodically:
MAKE fs FileSystem("MMC")

START EVERY 60000 fs.Flush ; update memory card once per minute

Open files, leave them open and simply write to them as required.

3. Keeping Potential Data Loss to an Absolute Minimum, and Enabling
Memory card to be Temorarily Removed during Operation.
Create a RAM disk and write data to a file (or files) on that in the first place.

When the RAM disk file exceeds a certain size or when RAM disk free space is lower that a set
limit, and if the memory card is present:

1. Open a file on the memory card

2. Append the RAMdisk file contents to the Memory card file.

3. Close the memory card file.

4. Flush the memory card file system

5. Empty the Ram disk file.

See example code at the end of this document.

D026 V20110616 Data Logging with Memory Cards Page 2

You can also use the flash file system instead of RAM disk, with the advantage of higher temporary
storage capacity.

Memory Cards – Technical Details
The cache memory for memory cards is volatile i.e. it will be lost if the power is cut. Fortunately, a
large capacity memory card will tolerate relatively frequent writes because of its built in wear
levelling, and the card itself is relatively cheap and replaceable.

The FileSystem Flush message ensures that all file directory entries are brought up to date with the
current file size, and then writes all cached write data to the card.

If power is cut and re-applied, the file system will attempt to come up in the same state it was after
the last Flush message was sent to it. Any writes after the Flush message and before loss of power
will be lost.

(Sending Flush to individual files in a memory card file system does nothing useful)

On Board Flash Memory – Best Practice
1. If there are frequent log file updates, it's best not to interleave many small writes to different

files.

2. Keep files for writing in the root directory.

3. After writing to a file, send a Flush message to the file (not to the file system).

4. Ensure the VM2 is fitted with a Lithium backup battery.

On Board Flash Memory – Technical Details
Updates are written in the first instance to a non-volatile RAM area, and if the system is powered
off and on again the data is retained. The Flash File System has two page-cache buffers of size 64k
(the flash memory's erase block size). One is fixed at the first page of the memory and holds the
FAT (File allocation table) and root directory which are usually the most frequently accessed parts
of the file system. The other is movable and is only written to the flash when a new page is needed
for writing, e.g. when 64k of data has been written to a file or when switching from one file to
another and, as is likely, the data is on different pages.

Because the cache pages are non-volatile (held in battery backed RAM), sending the Flush message
to the Flash FileSystem is not recommended for most applications and may actually cause
unnecessary wear.

Sending a Flush message to a file is necessary as it copies the file length information from a
volatile data structure in the running program to the nonvolatile cached block corresponding to the
file's directory entry. If you fail to do this, the data written to the file since the last Flush of the file
will be lost. Usually the file Flush message will only update a cache block, not result in writing to
the flash.

Because there are only two 64K pages of cache, it is recommended to keep log files in the root
directory so that all directory updates remain in Page 0. Note there is a limit of 512 files in the root
directory

D026 V20110616 Data Logging with Memory Cards Page 3

Frequent writes to multiple files may encourage thrashing of the moveable cache page, so it's best
not to interleave many small writes to different files

Note that use of the flash file system takes away 128K from the available system RAM for use as
cache memory.

RAM disk – Best Practice
1. Choose RAM disk size carefully – it's a compromise between system memory and file

system capacity.

2. Check file system space and be prepared to discard data if the limited space becomes full.
There is a feature that will do this automatically, discarding the oldest data.

3. Ensure the VM2 is fitted with a Lithium backup battery.

RAM Disk – Technical Details
RAM disk is very fast for both reading and writing, has no wear problems at all and is non-volatile
as long as the battery is fitted and working. It does, of course, have limited data capacity compared
with the other media, and it the memory reserved for it is taken away from the pool of system
memory. RAM disk files have their directory entry length updated every time the file is written, so
don't need a file Flush message unless you also want to set the time and date stamp, and of course
the there is never a need to send a Flush message to the RAM filesystem.

Example Code for Dealing With Memory Card Removal
The code below shows how to use a memory card that can be removed while a program is running,
and also to minimise the possibility of loss of data due to power failure.

It is not safe to remove the card while a file is open or write data is in the cache (this is indicated by
the LED on the memory card interface) so the file should be kept closed most of the time and the
filesystem should be flushed after closing the file.

A good way to deal with this is to log data to a file on RAM disk, and then copy the RAM disk file
contents to the memory card file when a certain file size has been reached.

The update can be preceded by a check for media present (The file system Valid message suffices
for this) and must consist of opening the file, writing the data and immediately closing the file. An
example logging function might look like this:

TO init
 MAKE ramfs Filesystem ("RAM", 50*1024)
 ; all logging data is printed to this file
 logtemp := ramfs.open("logtemp.txt", "")
 MAKE logtimer Stopwatch
 MAKE cardfs FileSystem("MMC")
 START copy_logfile
END
TO copy_logfile
 local f
 EVERY 10000 ; check every 10 seconds

D026 V20110616 Data Logging with Memory Cards Page 4

 [
 IF (logtimer.Time > 600000 OrElse logtemp.Length > 20000)
 AndAlso logtemp.Length > 0
 AndAlso cardfs.Valid ; media must be present
 [
 f := cardfs.Open("log.txt", "")
 WAIT 1000 ; give operator time to notice LED
 IF cardfs.Valid
 [
 logtemp.lock
 logtemp.Reset
 PRINT TO f, logtemp
 f.Close
 logtemp.Empty
 logtimer.Reset
 logtemp.Unlock
]
]
]
END

The application itself can simply PRINT TO logtemp and need take no special other precautions.
Note that while the card is not present the data will simply accumulate in the RAM disk file until
the card is replaced or the RAM disk capacity is exceeded.

Flash File instead of RAM File
Similarly the flash file system could be used for temporary storage. If the temporary file size is
limited to less than 64k while the memory card is present, there will be no flash memory wear at all,
while in the absence of a memory card it would allow accumulation of a larger volume of data up to
the capacity of the flash memory, which is 7MB.

Updated for later versions of Venom – Anahata 2011-06-16

D026 V20110616 Data Logging with Memory Cards Page 5

	Data Logging with Flash Memory File Systems
	Summary of File System Capabilities
	Write Wear in Flash Memory
	The Flush Message
	Memory Cards – Best Practice
	1. Writing Infrequently to a Card
	2. Writing Frequently or Continuously To a File or Files
	3. Keeping Potential Data Loss to an Absolute Minimum, and Enabling Memory card to be Temorarily Removed during Operation.

	Memory Cards – Technical Details
	On Board Flash Memory – Best Practice
	On Board Flash Memory – Technical Details
	RAM disk – Best Practice
	RAM Disk – Technical Details

	Example Code for Dealing With Memory Card Removal
	Flash File instead of RAM File

